Icaritin (ICT) is a prenylflavonoid derivative that has been approved by National Medical Products Administration for the treatment of hepatocellular carcinoma. This study aims to evaluate the potential inhibitory effect of ICT against cytochrome P450 (CYP) enzymes and to elucidate the inactivation mechanisms. Results showed that ICT inactivated CYP2C9 in a time-, concentration-, and NADPH-dependent manner with K = 1.896 M, K = 0.02298 minutes, and K/K = 12 minutes mM, whereas the activities of other CYP isozymes was minimally affected. Additionally, the presence of CYP2C9 competitive inhibitor, sulfaphenazole, superoxide dismutase/catalase system, and GSH all protected CYP2C9 from ICT-induced activity loss. Moreover, the activity loss was neither recovered by washing the ICT-CYP2C9 preincubation mixture nor the addition of potassium ferricyanide. These results, collectively, implied the underlying inactivation mechanism involved the covalent binding of ICT to the apoprotein and/or the prosthetic heme of CYP2C9. Furthermore, an ICT-quinone methide (QM)-derived GSH adduct was identified, and human glutathione S-transferases (GST) isozymes GSTA1-1, GSTM1-1, and GSTP1-1 were shown to be substantially involved in the detoxification of ICT-QM. Interestingly, our systematic molecular modeling work predicted that ICT-QM was covalently bound to C216, a cysteine residue located in the F-G loop downstream of substrate recognition site (SRS) 2 in CYP2C9. The sequential molecular dynamics simulation confirmed the binding to C216 induced a conformational change in the active catalytic center of CYP2C9. Lastly, the potential risks of clinical drug-drug interactions triggered by ICT as a perpetrator were extrapolated. In summary, this work confirmed that ICT was an inactivator of CYP2C9. SIGNIFICANCE STATEMENT: This study is the first to report the time-dependent inhibition of CYP2C9 by icaritin (ICT) and the intrinsic molecular mechanism behind it. Experimental data indicated that the inactivation was via irreversible covalent binding of ICT-quinone methide to CYP2C9, while molecular modeling analysis provided additional evidence by predicting C216 as the key binding site which influenced the structural confirmation of CYP2C9's catalytic center. These findings suggest the potential of drug-drug interactions when ICT is co-administered with CYP2C9 substrates clinically.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/dmd.122.001245 | DOI Listing |
Pharmaceutics
December 2024
College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
: Perillyl alcohol (POH), a monoterpene natural product derived from the essential oils of plants such as perilla (), is currently in phase I and II clinical trials as a chemotherapeutic agent. In this study, we investigated the effect of POH on cytochrome P450 (CYP) activity for evaluating POH-drug interaction potential. : The investigation was conducted using pooled human liver microsomes (HLMs), recombinant CYP3A4 (rCYP3A4) enzymes, and human pluripotent stem cell-derived hepatic organoids (hHOs) employing liquid chromatography-tandem mass spectrometry.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Pharmacokinetics Dynamics & Metabolism, Pfizer Inc., Groton, Connecticut 06340, United States.
assessment of the potential of compounds to affect drug metabolizing enzymes and transporters and perpetrate drug-drug interactions (DDIs) is a common practice in drug research. For the development phase, regulators define an exhaustive list of enzymes and transporters to consider, but DDIs associated with many of these are minor and can be well-managed in the clinic; thus, progression of drug candidates that address unmet medical needs should not be curtailed due to this property. However, some enzymes and transporters are very important in drug disposition, so it is important to avoid/reduce inhibition or induction of these through drug design.
View Article and Find Full Text PDFArch Pharm Res
January 2025
College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
BMC Chem
January 2025
Energy Systems Engineering Department, Engineering Faculty, Adana Alparslan Türkeş Science and Technology University, 01250, Adana, Türkiye.
Although the antiallergic properties of compounds such as CAPE, Melatonin, Curcumin, and Vitamin C have been poorly discussed by experimental studies, the antiallergic properties of these famous molecules have never been discussed with calculations. The histamine-1 receptor (H1R) belongs to the family of rhodopsin-like G-protein-coupled receptors expressed in cells that mediate allergies and other pathophysiological diseases. In this study, pharmacological activities of FDA-approved second generation H1 antihistamines (Levocetirizine, desloratadine and fexofenadine) and molecules such as CAPE, Melatonin, Curcumin, Vitamin C, ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) profiles, density functional theory (DFT), molecular docking, biological targets and activities were compared by calculating.
View Article and Find Full Text PDFJ Cannabis Res
January 2025
Division of General Internal Medicine, Mayo Clinic College of Medicine and Science, 200 First St SW, Rochester, MN, 55905, USA.
Background: Differences in cannabinoid metabolism and patient responses can arise even with equivalent doses and formulations. Genetic polymorphisms in genes responsible for cannabinoid metabolism and medications that alter CYP450 pathways responsible for metabolism of cannabinoids may account for some of this variability.
Materials And Methods: A retrospective chart review was conducted on a cohort of unselected patients who had previously completed pharmacogenomic testing and reported oral cannabis use, as defined as "oral" or "by mouth" route of administration.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!