Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Lipid metabolism plays an essential role in the genesis and progress of acute myocardial infarction (AMI). Herein, we identified and verified latent lipid-related genes involved in AMI by bioinformatic analysis. Lipid-related differentially expressed genes (DEGs) involved in AMI were identified using the GSE66360 dataset from the Gene Expression Omnibus (GEO) database and R software packages. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted to analyze lipid-related DEGs. Lipid-related genes were identified by two machine learning techniques: least absolute shrinkage and selection operator (LASSO) regression and support vector machine recursive feature elimination (SVM-RFE). The receiver operating characteristic (ROC) curves were used to descript diagnostic accuracy. Furthermore, blood samples were collected from AMI patients and healthy individuals, and real-time quantitative polymerase chain reaction (RT-qPCR) was used to determine the RNA levels of four lipid-related DEGs. Fifty lipid-related DEGs were identified, 28 upregulated and 22 downregulated. Several enrichment terms related to lipid metabolism were found by GO and KEGG enrichment analyses. After LASSO and SVM-RFE screening, four genes (, and ) were identified as potential diagnostic biomarkers for AMI. Moreover, the RT-qPCR analysis indicated that the expression levels of four DEGs in AMI patients and healthy individuals were consistent with bioinformatics analysis results. The validation of clinical samples suggested that 4 lipid-related DEGs are expected to be diagnostic markers for AMI and provide new targets for lipid therapy of AMI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10042701 | PMC |
http://dx.doi.org/10.18632/aging.204542 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!