Ethnopharmacological Relevance: The Mongolian medicine Eerdun Wurile is a commonly used Mongolian in folk medicine used to treat cerebral nervous system diseases such as cerebral hemorrhage, cerebral thrombosis, nerve injury and cognitive function, cardiovascular diseases such as hypertension and coronary heart disease. Eerdun wurile may effect anti-postoperative cognitive function.
Aim Of The Study: To investigate the molecular mechanism of the Mongolian medicine Eerdun Wurile Basic Formula (EWB) in improving postoperative cognitive dysfunction (POCD) based on Network pharmacology, and to confirm involvement of the SIRT1/p53 signal pathway, one of the key signal pathways, by using the POCD mouse model.
Material And Methods: Obtain compounds and disease-related targets through TCMSP, TCMID, PubChem, PharmMapper platforms, GeneCards, and OMIM databases, and screen intersection genes; Use Cytoscape software to build a "drug-ingredient-disease-target" network, and the STRING platform for protein interaction analysis.; R software was used to analyze the function of gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment.; AutoDock Vina software for active components and core targets to Perform molecular docking. The POCD mouse model was prepared by intracerebroventricular injection of lipopolysaccharide (LPS), and the morphological changes of hippocampal tissue were observed by hematoxylin-eosin (HE) staining, Western blot, immunofluorescence and TUNEL were used to verify the results of network pharmacological enrichment analysis.
Results: There were 110 potential targets for improving POCD by EWB, 117 items were enriched by GO, and 113 pathways were enriched by KEGG, among which the SIRT1/p53 signaling pathway was related to the occurrence of POCD. Quercetin, kaempferol, vestitol, β-sitosterol and 7-methoxy-2-methyl isoflavone in EWB can form stable conformations with low binding energy with core target proteins IL-6, CASP3, VEGFA, EGFR and ESR1. Animal experiments showed that compared with the POCD model group, the EWB group could significantly improve the apoptosis in the hippocampus of the mice, and significantly down-regulate the expression of Acetyl-p53 protein (P < 0.05).
Conclusion: EWB can improve POCD with the characteristics of multi-component, multi-target, and multi-pathway synergistic effects. Studies have confirmed that EWB can improve the occurrence of POCD by regulating the expression of genes related to the SIRT1/p53 signal pathway, which provides a new target and basis for the treatment of POCD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jep.2023.116312 | DOI Listing |
Biomed Chromatogr
June 2024
Department of Anesthesiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
This study analyzed the endogenous metabolites and metabolic pathways in the serum of Sprague-Dawley (SD) rats gavaged with the Eerdun Wurile basic formula (EWB) using metabolomics methods and network pharmacology to explore the possible mechanism of action of the EWB in improving postoperative cognitive dysfunction (POCD). SD rats were divided into the basic formula group, which received the EWB, and the control group, which received equal amounts of distilled water. The blood was collected from the abdominal aorta and analyzed for metabolite profiles using ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS).
View Article and Find Full Text PDFMol Neurobiol
December 2023
Department of Anesthesiology, The Affiliated Hospital of Inner Mongolia Medical University, Huimin District, Hohhot, 010059, Inner Mongolia Autonomous Region, China.
The object of our work was to observe whether the Mongolian medicine Eerdun Wurile (EW) improve postoperative cognitive dysfunction (POCD) by affecting the TLR4/NF-κB. Mice (6-8-week-old male C57BL/6 J) were selected to establish an animal model of POCD by combining intracerebroventricular injection of lipopolysaccharide and nephrectomy; EW formulation and EW basic formulation were administered intra-gastrically for 7 consecutive days. The cognitive performance was assessed by Morris water maze test.
View Article and Find Full Text PDFJ Ethnopharmacol
June 2023
Medicine Innovation Center for Nationalities, Inner Mongolia Medical University, Hohhot, 010110, China. Electronic address:
Ethnopharmacological Relevance: The Mongolian medicine Eerdun Wurile is a commonly used Mongolian in folk medicine used to treat cerebral nervous system diseases such as cerebral hemorrhage, cerebral thrombosis, nerve injury and cognitive function, cardiovascular diseases such as hypertension and coronary heart disease. Eerdun wurile may effect anti-postoperative cognitive function.
Aim Of The Study: To investigate the molecular mechanism of the Mongolian medicine Eerdun Wurile Basic Formula (EWB) in improving postoperative cognitive dysfunction (POCD) based on Network pharmacology, and to confirm involvement of the SIRT1/p53 signal pathway, one of the key signal pathways, by using the POCD mouse model.
J Chromatogr B Analyt Technol Biomed Life Sci
November 2022
Institute of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China. Electronic address:
Ethnomedicine Eerdun Wurile (EW) can significantly promote poststroke neuro-recovery through modulation of microglia polarization. Fraction 4-6 (F4-6) isolated from EW via serial fractionation inhibits the expression of pro-inflammatory genes in LPS stimulated microglia. However, the key active molecules of F4-6 have not been identified.
View Article and Find Full Text PDFFront Neurosci
January 2022
Department of Anesthesiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
Objective: To study the effect of , a traditional Mongolian medicine, on the cognitive function of rats by activating the IRS-PI3K-AKT-GLUT4 pathway in an animal model of postoperative cognitive dysfunction (POCD).
Methods: Fifty clean-grade adults Sprague Dawley (SD) male rats were assigned to one of five groups: (1) a control group with no anesthesia (Group C), (2) a POCD model group with anesthesia only (Group P), (3) POCD group with low-dose EW treated (Group L), (4) a POCD group with high-dose EW treated (Group H), and (5) a POCD model group with dexmedetomidine treated (Group D) for positive control. The study started 7 days after all rats had acclimated to housing.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!