Ecosystem dynamics undergoing alterations in structure and function highlights the need to look into the relations between ecological parameters and organismal fitness and tolerance. Ecophysiological studies are used to understand how organisms adapt to and cope up with environmental stress. Current study uses a process-based approach to model physiochemical parameters regarding seven different fish species. Species respond to climatic variations via acclimation or adaptation through physiological plasticity. Four sites are differentiated into two types based on the water quality parameters and metal contamination. Seven fish species are clustered into two groups, each group depicting separate pattern of response in similar habitat. In this manner, biomarkers from three different physiological axes- stress, reproduction, and neurology were taken to determine the organism's ecological niche. Cortisol, Testosterone, Estradiol, and AChE are the signature molecules estimated for the said physiological axes. The ordination technique, nonmetric multidimensional scaling, has been utilized to visualize the differentiated physiological response to changing environmental conditions. Then, Bayesian Model Averaging (BMA) was used to identify the factors that play a key role in refining the stress physiology and determining the niche. Current study confirms different species belonging to similar habitats respond to various environmental and physiological factors in a different manner as various biomarkers respond in a species-specific pattern that induces the choice of habitat preference controlling its ecophysiological niche. In the present study, it is quite apparent that adaptive mechanism of fish to environmental stress is achieved through modification of physiological mechanisms through a panel of biochemical markers. These markers organize a cascade of physiological event at various levels including reproduction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.162328 | DOI Listing |
PLoS One
January 2025
Alliance for Research in Exercise Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, Adelaide, Australia.
Background: Cold-water immersion (CWI) has gained popularity as a health and wellbeing intervention among the general population.
Objective: This systematic review and meta-analysis aimed to evaluate the psychological, cognitive, and physiological effects of CWI in healthy adults.
Methods: Electronic databases were searched for randomized trials involving healthy adults aged ≥ 18 years undergoing acute or long-term CWI exposure via cold shower, ice bath, or plunge with water temperature ≤15°C for at least 30 seconds.
Integr Environ Assess Manag
January 2025
Industrieverband Agrar e. V. (IVA), Wissenschaft und Innovation, Frankfurt am Main, Germany.
Current publications that are shaping public perception repeatedly claim that residues of plant protection products (PPP) in the environment demonstrate gaps in assessing the exposure and effects of PPP, allegedly revealing the inability of the European regulatory system to prevent environmental contamination and damage such as biodiversity decline. The hypothesis is that environmental risk assessments rely on inappropriate predictive models that underestimate exposure and do not explicitly account for the impact of combinations of environmental stressors and physiological differences in stress responses. This article puts this criticism into context to allow for a more balanced evaluation of the European regulatory system for PPP.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States.
The daily light-dark cycle is a recurrent and predictable environmental phenomenon to which many organisms, including cyanobacteria, have evolved to adapt. Understanding how cyanobacteria alter their metabolic attributes in response to subjective light or dark growth may provide key features for developing strains with improved photosynthetic efficiency and applications in enhanced carbon sequestration and renewable energy. Here, we undertook a label-free proteomic approach to investigate the effect of extended light (LL) or extended dark (DD) conditions on the unicellular cyanobacterium ATCC 51142.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
January 2025
Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea.
Biofilm, complex structures formed by microorganisms within an extracellular polymeric matrix, pose significant challenges in the sector by harboring dangerous pathogens and complicating decontamination, thereby increasing the risk of foodborne illnesses. This article provides a comprehensive review of the sigma factor, 's role in biofilm development, specifically in gram-negative bacteria, and how the genetic, environmental, and regulatory elements influence activity with its critical role in bacterial stress responses. Our findings reveal that is a pivotal regulator of biofilm formation, enhancing bacterial survival in adverse conditions.
View Article and Find Full Text PDFJ Med Microbiol
January 2025
Animal and Agriculture Department, Hartpury University, Gloucester, GL19 3BE, UK.
Microbiota in the gastrointestinal tract (GIT) consisting of the rumen and hindgut (the small intestine, cecum and colon) in dairy calves play a vital role in their growth and development. This review discusses the development of dairy calf intestinal microbiomes with an emphasis on the impact that husbandry and rearing management have on microbiome development, health and growth of pre-weaned dairy calves. The diversity and composition of the microbes that colonize the lower GIT (small and large intestine) can have a significant impact on the growth and development of the calf, through influence on nutrient metabolism, immune modulation, resistance or susceptibility to infection, production outputs and behaviour modification in adult life.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!