The macular carotenoids lutein and zeaxanthin are taken up from the bloodstream into the human retina through a selective process, for which the HDL cholesterol receptor scavenger receptor BI (SR-BI) in the cells of retinal pigment epithelium (RPE) is thought to be a key mediator. However, the mechanism of SR-BI-mediated selective uptake of macular carotenoids is still not fully understood. Here, we investigate possible mechanisms using biological assays and cultured HEK293 cells, a cell line without endogenous SR-BI expression. Binding affinities between SR-BI and various carotenoids were measured by surface plasmon resonance (SPR) spectroscopy, which shows that SR-BI cannot bind lutein or zeaxanthin specifically. Overexpression of SR-BI in HEK293 cells results in more lutein and zeaxanthin taken up than β-carotene, and this effect can be eliminated by an SR-BI mutant (C384Y) whose cholesterol uptake tunnel is blocked. Next, we determined the effects of HDL and hepatic lipase (LIPC), SR-BI's partners in HDL cholesterol transport, on SR-BI-mediated carotenoid uptake. HDL addition dramatically reduced lutein, zeaxanthin, and β-carotene in HEK293 cells expressing SR-BI, but the cellular lutein and zeaxanthin are higher than β-carotene. LIPC addition increases the uptake of all three carotenoids in HDL-treated cells, and promotes the transport of lutein and zeaxanthin better than β-carotene. Our results suggest that SR-BI and its HDL cholesterol partner HDL and LIPC may be involved in the selective uptake of macular carotenoids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10076185 | PMC |
http://dx.doi.org/10.1016/j.exer.2023.109429 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!