Pectolinarigenin ameliorates acetaminophen-induced acute liver injury via attenuating oxidative stress and inflammatory response in Nrf2 and PPARa dependent manners.

Phytomedicine

Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China. Electronic address:

Published: May 2023

Background: Cirsii Japonici Herba Carbonisata (Dajitan in Chinese) has been used to treat liver disorders in Asian countries. Pectolinarigenin (PEC), an abundant constituent in Dajitan, has been found to possess a wide range of biological benefits, including hepatoprotective effects. However, the effects of PEC on acetaminophen (APAP)-induced liver injury (AILI) and the underlying mechanisms have not been studied.

Purposes: To explore the role and mechanisms of PEC in protecting against AILI.

Study Design And Methods: The hepatoprotective benefits of PEC were studied using a mouse model and HepG2 cells. PEC was tested for its effects by injecting it intraperitoneally before APAP administration. To assess liver damage, histological and biochemical tests were performed. The levels of inflammatory factors in the liver were measured using RT-PCR and ELISA. Western blotting was used to measure the expression of a panel of key proteins involved in APAP metabolism, as well as Nrf2 and PPARα. PEC mechanisms on AILI were investigated using HepG2 cells, while the Nrf2 inhibitor (ML385) and PPARα inhibitor (GW6471) were used to validate the importance of either Nrf2 and PPARα in the hepatoprotective effects of PEC.

Results: PEC treatment decreased serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) levels in the liver. PEC pretreatment increased the activity of superoxide dismutase (SOD) and glutathione (GSH) while decreasing malondialdehyde production (MDA). PEC could also up-regulate two important APAP detoxification enzymes (UGT1A1 and SULT1A1). Further research revealed that PEC reduced hepatic oxidative damage and inflammation, and up-regulated APAP detoxification enzymes in hepatocytes by activating the Nrf2 and PPARα signaling pathways.

Conclusions: PEC ameliorates AILI by decreasing hepatic oxidative stress and inflammation while increasing phase Ⅱ detoxification enzymes related to APAP harmless metabolism through activation of Nrf2 and PPARα signaling. Hence, PEC may serve as a promising therapeutic drug against AILI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2023.154726DOI Listing

Publication Analysis

Top Keywords

nrf2 pparα
16
pec
12
detoxification enzymes
12
liver injury
8
oxidative stress
8
hepatoprotective effects
8
hepg2 cells
8
apap detoxification
8
hepatic oxidative
8
pparα signaling
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!