Magnetic biochar promotes the risk of mobile genetic elements propagation in sludge anaerobic digestion.

J Environ Manage

Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha, 410004, China. Electronic address:

Published: June 2023

Mobile genetic elements (MGEs) mediated horizontal gene transfer is the primary reason for the propagation of antibiotic resistance genes in environment. The behavior of MGEs under magnetic biochar pressure in sludge anaerobic digestion (AD) is still unknown. This study evaluated the effects of different dosage magnetic biochar on the MGEs in AD reactors. The results showed that the biogas yield was highest (106.68 ± 1.16 mL g VS) with adding optimal dosage of magnetic biochar (25 mg g TS), due to it increased the microorganism's abundance involved in hydrolysis and methanogenesis. While, the total absolute abundance of MGEs in the reactors with magnetic biochar addition increased by 11.58%-77.37% compared with the blank reactor. When the dosage of magnetic biochar was 12.5 mg g TS, the relative abundance of most MGEs was the highest. The enrichment effect on ISCR1 was the most significant, and the enrichment rate reached 158.90-214.16%. Only the intI1 abundance was reduced and the removal rates yield 14.38-40.00%, which was inversely proportional to the dosage of magnetic biochar. Co-occurrence network explored that Proteobacteria (35.64%), Firmicutes (19.80%) and Actinobacteriota (15.84%) were the main potential host of MGEs. Magnetic biochar changed MGEs abundance by affecting the potential MGEs-host community structure and abundance. Redundancy analysis and variation partitioning analysis showed that the combined effect of polysaccharides, protein and sCOD exhibited the greatest contribution (accounted for 34.08%) on MGEs variation. These findings demonstrated that magnetic biochar increases the risk of MGEs proliferation in AD system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.117492DOI Listing

Publication Analysis

Top Keywords

magnetic biochar
36
dosage magnetic
16
magnetic
9
mges
9
mobile genetic
8
genetic elements
8
sludge anaerobic
8
anaerobic digestion
8
mges magnetic
8
biochar
8

Similar Publications

Magnetic nanoparticle modified moss Biochar: A novel solution for effective removal of enrofloxacin from aquaculture water.

J Environ Manage

January 2025

Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, PR China. Electronic address:

The presence of residual antibiotics in water constitutes a potential threat to aquatic environments. Therefore, designing environmentally friendly and efficient biochar adsorbents is crucial. Aquaculture by-product moss (bryophyte) was transformed into biochar, which can eliminate antibiotics from wastewater through adsorption.

View Article and Find Full Text PDF

Cadmium (Cd) and arsenic (As) often coexist in water and agricultural soils around mining areas, and it is difficult to remove them at the same time due to their opposite chemical behaviors. Therefore, this study employed a co-precipitation-pyrolysis method to synthesize silica-based magnetic biochar (SMB) materials for the remediation of water contaminated with both Cd and As. The optimization of preparation conditions involved introducing three different types of silicates (NaSiO, CaSiO,and SiO) into the biomass-magnetite mixture, followed by pyrolysis at various temperatures (300℃, 500℃, and 700℃), and the optimal preparation conditions were determined based on the composite batch experiments.

View Article and Find Full Text PDF
Article Synopsis
  • The study developed a magnetic composite from pistachio shell biochar modified with MOF-808 to effectively remove methylene blue dye and diazinon pesticide from water.
  • The composite demonstrated high removal efficiencies of 99.32% for methylene blue and 99.14% for diazinon under optimal conditions involving specific pH, temperature, and contact time.
  • Kinetic and thermodynamic analyses indicated that the adsorption was spontaneous, endothermic, and involved both physical and chemical interactions, with the Freundlich isotherm model best describing the process.
View Article and Find Full Text PDF

Fertilization of potentially toxic element-contaminated soils remediated with reusable biochar pellets using rice straw, pig manure and their derived biochar.

Environ Pollut

December 2024

Hubei Key Laboratory of Soil Environment and Pollution Remediation, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China. Electronic address:

Potentially toxic elements (PTEs) are widespread pollutants in agricultural fields, presenting significant challenges to the maintenance of soil ecological functions while simultaneously reducing their concentrations. This study detailed the development of a high-strength reusable silicate magnetic composite biochar sphere (SMBCS) characterized by superior magnetic and adsorption properties, synthesized from natural minerals and biochar. The application of SMBCS over three consecutive remediation cycles led to reductions in cadmium (Cd), lead (Pb), and arsenic (As) concentrations in soil by 28.

View Article and Find Full Text PDF

It is a great challenge to depict the evolution process of soil-nanomaterials micro-interfaces during soil remediation. A novel biochar loaded nano zero-valent iron (BC-nZVI) reactor with low density, high reactivity and suitable magnetism was prepared using the method we established. Fe nanoparticles (NPs) with the size <10 nm uniformly embedded in a layer of porous carbon networks, which attached firmly in the pores and outer surface of biochars.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!