A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Combined effect of stacking and magnetic field on the electrical conductivity and heat capacity of biased trilayer BP and BN. | LitMetric

In this paper, the Kubo-Greenwood formula based on the tight-binding model is used to investigate the effects of the bias voltage and magnetic field on the electrical conductivity and heat capacity of the trilayer BP and BN with energy-stable stacking structures. The results show that electronic and thermal properties of the selected structures can be significantly modified by external fields. The position and intensity of DOS peaks and the band gap of selected structures are affected by the external fields. When external fields increases above critical value, the band gap decreases to zero and semiconductor-metallic transition occurs. The results show that the thermal properties of the BP and BN structures are zero in TZ temperature region and increase by temperature above TZ. The increasing rate for thermal properties depends on the stacking configuration and changes with the bias voltage and magnetic field. In the presence of the stronger field, the TZ region decreases below 100 K. Compared to the BP structures, the BN types with larger band gap has smaller electrical conductivity which can be increased in order to 3L-BP by applying the stronger magnetic field or bias voltage. These results are interesting for the future development of nanoelectronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmgm.2022.108372DOI Listing

Publication Analysis

Top Keywords

magnetic field
16
electrical conductivity
12
bias voltage
12
thermal properties
12
external fields
12
band gap
12
field electrical
8
conductivity heat
8
heat capacity
8
voltage magnetic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!