Superoxide/hydrogen peroxide production by site IQ in complex I of the electron transport chain is conventionally assayed during reverse electron transport (RET) from ubiquinol to NAD. However, S1QELs (specific suppressors of superoxide/hydrogen peroxide production by site IQ) have potent effects in cells and in vivo during presumed forward electron transport (FET). Therefore, we tested whether site IQ generates S1QEL-sensitive superoxide/hydrogen peroxide during FET (site IQf), or alternatively, whether RET and associated S1QEL-sensitive superoxide/hydrogen peroxide production (site IQr) occurs in cells under normal conditions. We introduce an assay to determine if electron flow through complex I is thermodynamically forward or reverse: on blocking electron flow through complex I, the endogenous matrix NAD pool will become more reduced if flow before the challenge was forward, but more oxidised if flow was reverse. Using this assay we show in the model system of isolated rat skeletal muscle mitochondria that superoxide/hydrogen peroxide production by site IQ can be equally great whether RET or FET is running. We show that sites IQr and IQf are equally sensitive to S1QELs, and to rotenone and piericidin A, inhibitors that block the Q-site of complex I. We exclude the possibility that some sub-fraction of the mitochondrial population running site IQr during FET is responsible for S1QEL-sensitive superoxide/hydrogen peroxide production by site IQ. Finally, we show that superoxide/hydrogen peroxide production by site IQ in cells occurs during FET, and is S1QEL-sensitive.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10212513PMC
http://dx.doi.org/10.1042/BCJ20220611DOI Listing

Publication Analysis

Top Keywords

superoxide/hydrogen peroxide
32
peroxide production
24
production site
24
s1qel-sensitive superoxide/hydrogen
16
electron transport
12
site
10
generates s1qel-sensitive
8
superoxide/hydrogen
8
peroxide
8
site iqr
8

Similar Publications

Hypoxia decreases mitochondrial ROS production in cells.

Free Radic Biol Med

November 2024

Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA. Electronic address:

We re-examined the reported increase in mitochondrial ROS production during acute hypoxia in cells. Using the Amplex Ultrared/horseradish peroxidase assay we found a decrease, not increase, in hydrogen peroxide release from HEK293 cells under acute hypoxia, at times ranging from 1 min to 3 h. The rates of superoxide/hydrogen peroxide production from each of the three major sites (site I in complex I and site III in complex III in mitochondria, and NADH oxidases (NOX) in the cytosol) were decreased to the same extent by acute hypoxia, with no change in the cells' ability to degrade added hydrogen peroxide.

View Article and Find Full Text PDF

Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals.

View Article and Find Full Text PDF

Effects of carotenoids on mitochondrial dysfunction.

Biochem Soc Trans

February 2024

Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham U.K.

Oxidative stress, an imbalance between pro-oxidant and antioxidant status, favouring the pro-oxidant state is a result of increased production of reactive oxygen species (ROS) or inadequate antioxidant protection. ROS are produced through several mechanisms in cells including during mitochondrial oxidative phosphorylation. Increased mitochondrial-derived ROS are associated with mitochondrial dysfunction, an early event in age-related diseases such as Alzheimer's diseases (ADs) and in metabolic disorders including diabetes.

View Article and Find Full Text PDF

Fungi-derived natural antioxidants.

Crit Rev Food Sci Nutr

December 2023

Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey.

In humans, exogenous antioxidants aid the endogenous antioxidant system to detoxify excess ROS generated during oxidative stress, thereby protecting the body against various diseases and stressful conditions. The majority of natural antioxidants available on the consumer market are plant-based; however, fungi are being recognized as alternative sources of various natural antioxidants such as polysaccharides, pigments, peptides, sterols, phenolics, alkaloids, and flavonoids. In addition, some exogenous antioxidants are exclusively found in fungi.

View Article and Find Full Text PDF

Design of an Oxygen-Tolerant Photo-RAFT System for Protein-Polymer Conjugation Achieving High Bioactivity.

Angew Chem Int Ed Engl

November 2023

Cluster for Advanced Macromolecular Design and UNSW RNA Institute, School of Chemical Engineering, The University of New South Wales, 2052, Sydney, NSW, Australia.

Protein-polymer conjugates have significant potential in pharmaceutical and biomedical applications. To enable their widespread use, robust conjugation techniques are crucial. This study introduces a photo-initiated reversible addition-fragmentation chain-transfer (Photo-RAFT) polymerization system that exhibits excellent oxygen tolerance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!