Diabetic retinopathy (DR), a leading cause of preventable blindness, is expected to remain a growing health burden worldwide. Screening to detect early sight-threatening lesions of DR can reduce the burden of vision loss; nevertheless, the process requires intensive manual labor and extensive resources to accommodate the increasing number of patients with diabetes. Artificial intelligence (AI) has been shown to be an effective tool which can potentially lower the burden of screening DR and vision loss. In this article, we review the use of AI for DR screening on color retinal photographs in different phases of application, ranging from development to deployment. Early studies of machine learning (ML)-based algorithms using feature extraction to detect DR achieved a high sensitivity but relatively lower specificity. Robust sensitivity and specificity were achieved with the application of deep learning (DL), although ML is still used in some tasks. Public datasets were utilized in retrospective validations of the developmental phases in most algorithms, which require a large number of photographs. Large prospective clinical validation studies led to the approval of DL for autonomous screening of DR although the semi-autonomous approach may be preferable in some real-world settings. There have been few reports on real-world implementations of DL for DR screening. It is possible that AI may improve some real-world indicators for eye care in DR, such as increased screening uptake and referral adherence, but this has not been proven. The challenges in deployment may include workflow issues, such as mydriasis to lower ungradable cases; technical issues, such as integration into electronic health record systems and integration into existing camera systems; ethical issues, such as data privacy and security; acceptance of personnel and patients; and health-economic issues, such as the need to conduct health economic evaluations of using AI in the context of the country. The deployment of AI for DR screening should follow the governance model for AI in healthcare which outlines four main components: fairness, transparency, trustworthiness, and accountability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164194PMC
http://dx.doi.org/10.1007/s40123-023-00691-3DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
diabetic retinopathy
8
screening
8
screening color
8
color retinal
8
retinal photographs
8
development deployment
8
vision loss
8
intelligence diabetic
4
retinopathy screening
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!