Diabetes Mellitus (DM) is a long-term metabolic condition that is characterized by excessive blood glucose. DM is the third most death-causing disease, leading to retinopathy, nephropathy, loss of vision, stroke, and cardiac arrest. Around 90% of the total cases of diabetic patients have Type II Diabetes Mellitus (T2DM). Among various approaches for the treatment of T2DM. G proteincoupled receptors (GPCRs) 119 have been identified as a new pharmacological target. GPR119 is distributed preferentially in the pancreas β-cells and gastrointestinal tract (enteroendocrine cells) in humans. GPR119 receptor activation elevates the release of incretin hormones such as Glucagon-Like Peptide (GLP1) and Glucose Dependent Insulinotropic Polypeptide (GIP) from intestinal K and L cells. GPR119 receptor agonists stimulate intracellular cAMP production via Gαs coupling to adenylate cyclase. GPR119 has been linked to the control of insulin release by pancreatic β-cells, as well as the generation of GLP-1 by enteroendocrine cells in the gut, as per in vitro assays. The dual role of the GPR119 receptor agonist in the treatment of T2DM leads to the development of a novel prospective anti-diabetic drug and is thought to have decreased the probability of inducing hypoglycemia. GPR119 receptor agonists exert their effects in one of two ways: either by promoting glucose absorption by β-cells, or by inhibiting α-cells' ability to produce glucose. In this review, we summarized potential targets for the treatment of T2DM with special reference to GPR119 along with its pharmacological effects, several endogenous as well as exogenous agonists, and its pyrimidine nucleus containing synthetic ligands.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1389557523666230302140658DOI Listing

Publication Analysis

Top Keywords

gpr119 receptor
16
treatment t2dm
12
gpr119
8
type diabetes
8
diabetes mellitus
8
enteroendocrine cells
8
receptor agonists
8
structural insight
4
insight gpr119
4
gpr119 agonist
4

Similar Publications

Article Synopsis
  • * Over 10 weeks, the treatments led to significant improvements in blood glucose levels and weight management, with the combination therapy restoring important metabolic hormones and enhancing liver health.
  • * The findings suggest that these new GPR119 agonists, especially when used with DPP-IV inhibitors, could be promising for treating metabolic dysfunctions and liver issues associated with type-2 diabetes, indicating a need for further research.
View Article and Find Full Text PDF

Microbiota-derived lysophosphatidylcholine alleviates Alzheimer's disease pathology via suppressing ferroptosis.

Cell Metab

January 2025

School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair & Beijing Key Laboratory for Tumor Invasion and Metastasis, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China; State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China; Chinese Institute for Brain Research, Beijing, China. Electronic address:

Article Synopsis
  • Alzheimer's disease (AD) is a major neurodegenerative disorder needing new prevention and treatment strategies, and this study highlights the gut-microbiome-brain connection as a potential focus.
  • Research using a mouse model reveals that increased Clostridium and decreased Bacteroides levels correlate with β-amyloid (Aβ) accumulation, which is linked to cognitive decline.
  • Treatment with Bacteroides ovatus or its metabolite lysophosphatidylcholine (LPC) can reduce Aβ levels and improve cognition, suggesting that manipulating gut microbiota or their metabolites could aid in AD management.
View Article and Find Full Text PDF

Native mass spectrometry prescreening of G protein-coupled receptor complexes for cryo-EM structure determination.

Structure

December 2024

Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA. Electronic address:

G protein-coupled receptors (GPCRs) are essential transmembrane proteins playing key roles in human health and disease. Understanding their atomic-level molecular structure and conformational states is imperative for advancing drug development. Recent breakthroughs in single-particle cryogenic electron microscopy (cryo-EM) have propelled the structural biology of GPCRs into a new era.

View Article and Find Full Text PDF

Aims/hypothesis: Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone secreted by enteroendocrine K cells in the proximal small intestine. This study aimed to explore the function of human K cells at the molecular and cellular levels.

Methods: CRISPR-Cas9 homology-directed repair was used to insert transgenes encoding a yellow fluorescent protein (Venus) or an Epac-based cAMP sensor (Epac-S-H187) in the GIP locus in human duodenal-derived organoids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!