Sweat, as a sample that includes a lot of biochemical information, is good for non-invasive monitoring. In recent years, there have been an increasing number of studies on monitoring of sweat. However, there are still some challenges for the continuous analysis of samples. As a hydrophilic, easy-to-process, environmentally friendly, inexpensive and easily accessible material, paper is an ideal substrate material for making sweat analysis microfluidics. This review introduces the development of paper as a sweat analysis microfluidic substrate material, focusing on the advantages of the structural characteristics of paper, trench design and equipment integration applications to expand the design and research ideas for the development of sweat detection technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2an01818g | DOI Listing |
J Fluoresc
January 2025
Institute of Chemical Technology, Matunga, Mumbai, India.
This study introduces an innovative approach to high-resolution latent fingerprint detection using carbon quantum dots (CQDs) biosynthesized from spent coffee grounds, enhanced with nitrogen doping. Conventional fingerprinting methods frequently use hazardous chemicals and are costly, highlighting the need for eco-friendly, affordable alternatives that preserve detection quality. The biosynthesized nitrogen-doped CQDs exhibit strong photoluminescence and high stability, offering a sustainable, effective alternative for fingerprint imaging.
View Article and Find Full Text PDFACS Sens
January 2025
School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
Steroid hormones, especially progesterone (P), estradiol (E), and testosterone (T), are key bioactive regulators in various female physiological processes, including growth and development, ovulation, and the reproductive cycle, as well as metabolism and mental health. As lipophilic molecules produced in sex glands, these steroid female hormones can be transported through blood vessels into various body fluids such as saliva, sweat, and urine. However, the ultralow concentration of steroid hormones down to picomolar (pM) level necessitates great demands for ultrasensitive but low-cost analytic tools to implement accurate, point-of-care or even continuous monitoring in a user-friendly fashion.
View Article and Find Full Text PDFJ Cutan Pathol
January 2025
Department of Pathology and Dermatology, NYU Langone Medical Center, New York, New York, USA.
Background: Digital papillary adenocarcinoma (DPAC) is a rare but aggressive cutaneous malignant sweat gland neoplasm that occurs on acral sites. Despite its clinical significance, the cellular and genetic characteristics of DPAC remain incompletely understood.
Methods: We conducted a comprehensive genomic and transcriptomic analysis of DPAC (n = 14) using targeted next-generation DNA and RNA sequencing, along with gene expression profiling employing the Nanostring Technologies nCounter IO 360 Panel.
ACS Appl Mater Interfaces
January 2025
School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China.
Portable sensor technologies are indispensable in personalized healthcare and environmental monitoring as they enable the continuous tracking of key analytes. Human sweat contains valuable physiological information, and previously developed noninvasive sweat-based sensors have effectively monitored single or multiple biomarkers. By successfully detecting biochemicals in sweat, portable sensors could also significantly broaden their application scope, encompassing non-biological fluids commonly encountered in daily life, such as mineral water.
View Article and Find Full Text PDFPatients with cirrhosis have high systemic inflammation (TNFα, CRP, and IL-6) that is associated with poor outcomes. These biomarkers need continuous non-invasive monitoring, which is difficult with blood. We studied the AWARE sweat-sensor to measure these in passively expressed sweat in healthy people (N = 12) and cirrhosis (N = 32, 10 outpatients/22 inpatients) for 3 days.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!