Purpose: Develop a novel approach for accelerated 2D free-breathing myocardial perfusion via low-rank motion-corrected (LRMC) reconstructions.

Methods: Myocardial perfusion imaging requires high spatial and temporal resolution, despite scan time constraints. Here, we incorporate LRMC models into the reconstruction-encoding operator, together with high-dimensionality patch-based regularization, to produce high quality, motion-corrected myocardial perfusion series from free-breathing acquisitions. The proposed framework estimates beat-to-beat nonrigid respiratory (and any other incidental) motion and the dynamic contrast subspace from the actual acquired data, which are then incorporated into the proposed LRMC reconstruction. LRMC was compared with iterative SENSitivity Encoding (SENSE) (itSENSE) and low-rank plus sparse (LpS) reconstruction in 10 patients based on image-quality scoring and ranking by two clinical expert readers.

Results: LRMC achieved significantly improved results relative to itSENSE and LpS in terms of image sharpness, temporal coefficient of variation, and expert reader evaluation. Left ventricle image sharpness was approximately 75%, 79%, and 86% for itSENSE, LpS and LRMC, respectively, indicating improved image sharpness for the proposed approach. Corresponding temporal coefficient of variation results were 23%, 11% and 7%, demonstrating improved temporal fidelity of the perfusion signal with the proposed LRMC. Corresponding clinical expert reader scores (1-5, from poor to excellent image quality) were 3.3, 3.9 and 4.9, demonstrating improved image quality with the proposed LRMC, in agreement with the automated metrics.

Conclusion: LRMC produces motion-corrected myocardial perfusion in free-breathing acquisitions with substantially improved image quality when compared with iterative SENSE and LpS reconstructions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10952238PMC
http://dx.doi.org/10.1002/mrm.29626DOI Listing

Publication Analysis

Top Keywords

myocardial perfusion
20
proposed lrmc
12
image sharpness
12
improved image
12
image quality
12
lrmc
9
accelerated free-breathing
8
perfusion imaging
8
motion-corrected myocardial
8
free-breathing acquisitions
8

Similar Publications

Ventricular arrhythmias induced by ischemia/reperfusion injury limits the therapeutic effect of early reperfusion therapy for acute myocardial infarction. This study investigated the protective effects of the β2-adrenergic receptor (β2-AR) agonist clenbuterol against ischemia/reperfusion-induced arrhythmias and the underlying mechanism. Anesthetized rats were subjected to 10-min left coronary artery occlusion and 10-min reperfusion in vivo.

View Article and Find Full Text PDF

Background: The fluorescent dye indocyanine green (ICG) has been used to identify anatomical structures intraoperatively in coronary artery bypass grafting (CABG). This study aimed to evaluate the feasibility of using ICG to assess graft patency and territorial distribution of myocardial reperfusion during CABG.

Methods: Porcine arrested hearts (n = 18) were used to evaluate territorial distribution of native coronary arteries and of a coronary bypass constructed with porcine saphenous vein graft (SVG) using ICG.

View Article and Find Full Text PDF

Background: Normothermic ex situ heart perfusion (ESHP) has emerged as a valid modality for advanced cardiac allograft preservation and conditioning prior to transplantation though myocardial function declines gradually during ESHP thus limiting its potential for expanding the donor pool. Recently, the utilization of dialysis has been shown to preserve myocardial and coronary vasomotor function. Herein, we sought to determine the changes in myocardial metabolism that could support this improvement.

View Article and Find Full Text PDF

Flurpiridaz F 18: First Approval.

Am J Cardiovasc Drugs

January 2025

Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.

Flurpiridaz F 18 (FLYRCADO™) is an intravenous (IV) radioactive diagnostic drug being developed by GE Healthcare and Lantheus Medical Imaging for use in positron emission tomography (PET) myocardial perfusion imaging (MPI) to detect coronary artery disease (CAD). In September 2024, flurpiridaz F 18 was approved in the USA for PET MPI under rest or stress (pharmacologic or exercise) in adult patients with known or suspected CAD to evaluate for myocardial ischemia and infarction. This article summarizes the milestones in the development of flurpiridaz F 18 leading to this first approval for use in PET MPI in adult patients to evaluate for myocardial ischemia and infarction.

View Article and Find Full Text PDF

The electrophysiological mechanisms underlying melatonin's actions and the electrophysiological consequences of superimposed therapeutic hypothermia (TH) in preventing cardiac ischemia-reperfusion (IR) injury-induced arrhythmias remain largely unknown. This study aimed to unveil these issues using acute IR-injured hearts. Rabbits were divided into heart failure (HF), HF+melatonin, control, and control+melatonin groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!