Purpose: Develop a novel approach for accelerated 2D free-breathing myocardial perfusion via low-rank motion-corrected (LRMC) reconstructions.
Methods: Myocardial perfusion imaging requires high spatial and temporal resolution, despite scan time constraints. Here, we incorporate LRMC models into the reconstruction-encoding operator, together with high-dimensionality patch-based regularization, to produce high quality, motion-corrected myocardial perfusion series from free-breathing acquisitions. The proposed framework estimates beat-to-beat nonrigid respiratory (and any other incidental) motion and the dynamic contrast subspace from the actual acquired data, which are then incorporated into the proposed LRMC reconstruction. LRMC was compared with iterative SENSitivity Encoding (SENSE) (itSENSE) and low-rank plus sparse (LpS) reconstruction in 10 patients based on image-quality scoring and ranking by two clinical expert readers.
Results: LRMC achieved significantly improved results relative to itSENSE and LpS in terms of image sharpness, temporal coefficient of variation, and expert reader evaluation. Left ventricle image sharpness was approximately 75%, 79%, and 86% for itSENSE, LpS and LRMC, respectively, indicating improved image sharpness for the proposed approach. Corresponding temporal coefficient of variation results were 23%, 11% and 7%, demonstrating improved temporal fidelity of the perfusion signal with the proposed LRMC. Corresponding clinical expert reader scores (1-5, from poor to excellent image quality) were 3.3, 3.9 and 4.9, demonstrating improved image quality with the proposed LRMC, in agreement with the automated metrics.
Conclusion: LRMC produces motion-corrected myocardial perfusion in free-breathing acquisitions with substantially improved image quality when compared with iterative SENSE and LpS reconstructions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10952238 | PMC |
http://dx.doi.org/10.1002/mrm.29626 | DOI Listing |
Pharmacol Res Perspect
February 2025
Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Ventricular arrhythmias induced by ischemia/reperfusion injury limits the therapeutic effect of early reperfusion therapy for acute myocardial infarction. This study investigated the protective effects of the β2-adrenergic receptor (β2-AR) agonist clenbuterol against ischemia/reperfusion-induced arrhythmias and the underlying mechanism. Anesthetized rats were subjected to 10-min left coronary artery occlusion and 10-min reperfusion in vivo.
View Article and Find Full Text PDFRev Cardiovasc Med
January 2025
Cardiac Surgery, University of Cincinnati Medical Center, Cincinnati, OH 45202, USA.
Background: The fluorescent dye indocyanine green (ICG) has been used to identify anatomical structures intraoperatively in coronary artery bypass grafting (CABG). This study aimed to evaluate the feasibility of using ICG to assess graft patency and territorial distribution of myocardial reperfusion during CABG.
Methods: Porcine arrested hearts (n = 18) were used to evaluate territorial distribution of native coronary arteries and of a coronary bypass constructed with porcine saphenous vein graft (SVG) using ICG.
Anal Chim Acta
February 2025
Department of Chemistry, University of Waterloo, Waterloo, ON, Canada. Electronic address:
Background: Normothermic ex situ heart perfusion (ESHP) has emerged as a valid modality for advanced cardiac allograft preservation and conditioning prior to transplantation though myocardial function declines gradually during ESHP thus limiting its potential for expanding the donor pool. Recently, the utilization of dialysis has been shown to preserve myocardial and coronary vasomotor function. Herein, we sought to determine the changes in myocardial metabolism that could support this improvement.
View Article and Find Full Text PDFAm J Cardiovasc Drugs
January 2025
Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
Flurpiridaz F 18 (FLYRCADO™) is an intravenous (IV) radioactive diagnostic drug being developed by GE Healthcare and Lantheus Medical Imaging for use in positron emission tomography (PET) myocardial perfusion imaging (MPI) to detect coronary artery disease (CAD). In September 2024, flurpiridaz F 18 was approved in the USA for PET MPI under rest or stress (pharmacologic or exercise) in adult patients with known or suspected CAD to evaluate for myocardial ischemia and infarction. This article summarizes the milestones in the development of flurpiridaz F 18 leading to this first approval for use in PET MPI in adult patients to evaluate for myocardial ischemia and infarction.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan Branch, Taoyuan 33304, Taiwan.
The electrophysiological mechanisms underlying melatonin's actions and the electrophysiological consequences of superimposed therapeutic hypothermia (TH) in preventing cardiac ischemia-reperfusion (IR) injury-induced arrhythmias remain largely unknown. This study aimed to unveil these issues using acute IR-injured hearts. Rabbits were divided into heart failure (HF), HF+melatonin, control, and control+melatonin groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!