Hepatocellular carcinoma (HCC) is the most common and malignant liver tumor worldwide, although the treatment approaches for HCC continue to evolve, metastasis is the main reason for high mortality rates. S100 calcium-binding protein A11 (S100A11), an important member of the S100 family of small calcium-binding proteins, is overexpressed in various cells and regulates tumor development and metastasis. However, few studies report the role and underlying regulatory mechanisms of S100A11 in HCC development and metastasis. Herein, we discovered that S100A11 is overexpressed and associated with poor clinical outcomes in HCC cohorts, and we provided the first demonstration that S100A11 could serve as a novel diagnostic biomarker used in conjunction with AFP for HCC. Further analysis implied that S100A11 outperforms AFP in determining whether HCC patients have hematogenous metastasis or not. Using cell culture model, we demonstrated that S100A11 is overexpressed in metastatic hepatoma cells, knockdown of S100A11 decreases hepatoma cells proliferation, migration, invasion, and epithelial-mesenchymal transition process by inhibiting AKT and ERK signaling pathways. Altogether, our study provides new sights into the biological function and mechanisms underlying S100A11 in promoting metastasis of HCC and explores a novel target for HCC diagnosis and treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9969497 | PMC |
http://dx.doi.org/10.7150/ijms.80503 | DOI Listing |
Endocr Metab Immune Disord Drug Targets
January 2025
Department of Radiotherapy, Suzhou Ninth People's Hospital, Suzhou, 215200, China.
Background: Liquid-Liquid Phase Separation (LLPS) is a process involved in the formation of established organelles and various condensates that lack membranes; however, the relationship between LLPS and Ulcerative Colitis (UC) remains unclear.
Aims: This study aimed to comprehensively clarify the correlation between ulcerative colitis (UC) and liquid-liquid phase separation (LLPS).
Objectives: In this study, bioinformatics analyses and public databases were applied to screen and validate key genes associated with LLPS in UC.
Redox Biol
December 2024
Department of Ultrasound, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. Electronic address:
Chemotherapy is important in the systemic therapy for breast cancer. However, after chemotherapy, the left living tumour cells are more progressive. There is an urgent need to study the underlying mechanism which is still unclear to further improve the therapeutic efficacy of chemotherapy in breast cancer.
View Article and Find Full Text PDFTheranostics
January 2025
Neurooncology Unit, Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid 28041, Spain.
J Transl Med
December 2024
Department of Gastroenterology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing, 100029, China.
Background: Ulcerative colitis (UC) is a persistent inflammatory bowels disease (IBD) characterized by immune response dysregulation and metabolic disruptions. Tryptophan metabolism has been believed as a significant factor in UC pathogenesis, with specific metabolites influencing immune modulation and gut microbiota interactions. However, the precise regulatory mechanisms and key genes involved remain unclear.
View Article and Find Full Text PDFMedicine (Baltimore)
December 2024
Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, Beijing, China.
Background: This study investigates the role of S100A11 as a potential biomarker for glioma-associated macrophages (GAMs) and its correlation with GAMs infiltration in glioblastoma multiforme, aiming to better understand the immune microenvironment of glioma.
Methods: We conducted a comprehensive study using various techniques and approaches. First, we examined the expression of S100A11 on GAMs through Western blot, immunohistochemistry, and immunofluorescence analyses.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!