This paper introduces the reconstructed dataset along with procedures to implement air quality prediction, which consists of air quality, meteorological and traffic data over time, and their monitoring stations and measurement points. Given the fact that those monitoring stations and measurement points are located in different places, it is important to incorporate their time series data into a spatiotemporal dimension. The output can be used as input for various predictive analyses, in particular, we used the reconstructed dataset as input for grid-based (Convolutional Long Short-Term Memory and Bidirectional Convolutional Long Short-Term Memory) and graph-based (Attention Temporal Graph Convolutional Network) machine learning algorithms. The raw dataset is obtained from the Open Data portal of the Madrid City Council.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9969265 | PMC |
http://dx.doi.org/10.1016/j.dib.2023.108957 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!