Background: Scorpion stings may be life-threatening since their venoms are comprised of a wide range of toxins and other bioactive molecules, such as enzymes. At the same time, scorpion envenomation may increase matrix metalloproteases (MMPs) levels, which enhance proteolytic tissue destruction by venom. However, investigations on the impact of many scorpions' venoms, such as those of , on tissue proteolytic activity and MMP levels have not yet been conducted.
Methods And Results: The present study aimed to examine the total proteolysis levels in various organs after envenomation and evaluate the metalloproteases and serine proteases' contributions to the total proteolytic activity. Changes in MMPs and TIMP-1 levels were tested as well. Envenomation led to a significant increase in proteolytic activity levels in all assessed organs, mostly in the heart (by 3.34 times) and lungs (by 2.25 times).
Conclusions: Since EDTA presence showed a noticeable decrease in total proteolytic activity level, metalloproteases appeared to play a prominent role in total proteolytic activity. At the same time, MMPs and TIMP-1 levels were increased in all assessed organs, suggesting that envenomation causes systemic envenomation, which may induce multiple organ abnormalities, mostly because of the uncontrolled metalloprotease activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9970711 | PMC |
http://dx.doi.org/10.1155/2023/5262729 | DOI Listing |
Sci Adv
January 2025
Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China.
The proteasome degrades most superfluous and damaged proteins, and its decline is associated with many diseases. As the proteolytic unit, the 20 proteasome is assembled from 28 subunits assisted by chaperones PAC1/2/3/4 and POMP; then, it undergoes the maturation process, in which the proteolytic sites are activated and the assembly chaperones are cleared. However, mechanisms governing the maturation remain elusive.
View Article and Find Full Text PDFBreast Cancer Res Treat
January 2025
Department of Oncology, University of Torino, Via Nizza 44, 10126, Turin, Italy.
Purpose: Mammary carcinoma is comprised heterogeneous groups of cells with different metastatic potential. 4T1 mammary carcinoma cells metastasized to heart (4THM), liver (4TLM) and brain (4TBM) and demonstrate cancer-stem cell phenotype. Using these cancer cells we found thatTGF-β is the top upstream regulator of metastatic process.
View Article and Find Full Text PDFAnticancer Agents Med Chem
January 2025
Department of Chemistry, Illinois State University, Normal, Il, USA.
Many oncoproteins are important therapeutic targets because of their critical role in inducing rapid cell proliferation, which represents one of the salient hallmarks of cancer. Chronic Myeloid Leukemia (CML) is a cancer of hematopoietic stem cells that is caused by the oncogene BCR-ABL1. BCR-ABL1 encodes a constitutively active tyrosine kinase protein that leads to the uncontrolled proliferation of myeloid cells, which is a hallmark of CML.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, 31151, Republic of Korea.
Lactic acid bacteria (LAB), traditionally consumed as fermented foods, are now being applied to the medical field beyond health-functional food as probiotics. Therefore, it is necessary to continuously discover and evaluate new strains with suitable probiotic characteristics, mainly focusing on safety. In this study, we isolated eight new strains from postmenopausal vaginal fluid using culturomics approaches, an emerging area of interest.
View Article and Find Full Text PDFNat Commun
January 2025
University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
Corticosteroid binding globulin (CBG; SERPINA6) binds >85% of circulating glucocorticoids but its influence on their metabolic actions is unproven. Targeted proteolytic cleavage of CBG by neutrophil elastase (NE; ELANE) significantly reduces CBG binding affinity, potentially increasing 'free' glucocorticoid levels at sites of inflammation. NE is inhibited by alpha-1-antitrypsin (AAT; SERPINA1).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!