Mitochondria are the primary source of energy production in cells, supporting the metabolic demand of tissue. The dysfunctional mitochondria are implicated in various diseases ranging from neurodegeneration to cancer. Therefore, regulating dysfunctional mitochondria offers a new therapeutic opportunity for diseases with mitochondrial dysfunction. Natural products are pleiotropic and readily obtainable sources of therapeutic agents, which have broad prospects in new drug discovery. Recently, many mitochondria-targeting natural products have been extensively studied and have shown promising pharmacological activity in regulating mitochondrial dysfunction. Hence, we summarize recent advances in natural products in targeting mitochondria and regulating mitochondrial dysfunction in this review. We discuss natural products in terms of their mechanisms on mitochondrial dysfunction, including modulating mitochondrial quality control system and regulating mitochondrial functions. In addition, we describe the future perspective and challenges in the development of mitochondria-targeting natural products, emphasizing the potential value of natural products in mitochondrial dysfunction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9968749 | PMC |
http://dx.doi.org/10.3389/fphar.2023.1093038 | DOI Listing |
Biosci Microbiota Food Health
August 2024
Department of Food Science, Széchenyi István University, Mosonmagyaróvár, 9200, Hungary.
The global probiotics market has been continuously growing, driven by consumer demand for immune-enhancing functional foods, dietary supplements, and natural therapeutics for gastrointestinal and gut function-mediated diseases. Probiotic microorganisms represent a diverse group of strains with complex but generalized mechanistic patterns. This review describes the various immunomodulatory mechanisms by which probiotics exert their effects, including the competitive exclusion of pathogenic microbes, production of antimicrobial substances, modulation of the immune system, and improvement of gut barrier function.
View Article and Find Full Text PDFJ Diabetes Metab Disord
June 2025
Department of Physiology, Kampala International University, Western Campus, Ishaka, Uganda.
Purpose: Diabetes mellitus is a global health challenge that leads to severe complications, negatively impacting overall health, life expectancy, and quality of life. Herbal medicines, valued for their accessibility and therapeutic benefits with minimal side effects, have been promoted as potential treatments. Managing conditions like diabetes, characterized by free radical production and cytokine-driven inflammation, is vital due to the active components in plants that exert direct pharmacological effects.
View Article and Find Full Text PDFExplor Target Antitumor Ther
December 2024
Center for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK.
Despite the fact that life expectancies are increasing and the burden of infectious diseases is decreasing, global cancer incidence rates are on the rise. Cancer outcome metrics are dismal for low- and middle-income countries (LMICs), including sub-Saharan Africa, where adequate resources and infrastructure for cancer care and control are lacking. Nigeria, the most populous country in Africa, exemplifies the miserable situation.
View Article and Find Full Text PDFEXCLI J
November 2024
Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100 Sassari, Italy.
The p53-MDM2 pathway plays a crucial role regulating tumor suppression and is a focal point of cancer research. This literature review delves into the complex interplay between the tumor suppressor protein p53 and its main regulator MDM2, highlighting their interaction and implications in cancer development and progression. The review compiles and summarizes the existing understanding of the biology and regulation of p53 and MDM2, emphasizing their roles in various cellular processes, including cell cycle regulation, DNA repair, apoptosis, and metabolism.
View Article and Find Full Text PDFNucleotide sequence can be translated in three reading frames from 5' to 3' producing distinct protein products. Many examples of RNA translation in two reading frames (dual coding) have been identified so far. We report simultaneous translation of mRNA transcripts derived from locus in all three reading frames that result in the synthesis of long proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!