The diffusive gradients in thin films (DGT) technique is an excellent method for investigating the dynamic processes of antibiotics in soils. However, whether it is applicable in antibiotic bioavailability assessment is yet to be disclosed. This study employed DGT to determine the antibiotic bioavailability in soil, and compared the results with plant uptake, soil solutions, and solvent extraction methods. DGT exhibited predictive capability for plant taking in antibiotics proved by the significant linear relationship between the DGT based concentration (C) and antibiotic concentration in roots and shoots. Although the performance of soil solution was acceptable based on linear relationship analysis, its stability was weaker than DGT. The results based on plant uptake and DGT indicated the bioavailable antibiotic contents in different soils were inconsistent because of the distinct mobility and resupply of sulphonamides and trimethoprim in different soils, as represented by K and R, which were affected by soil properties. Plant species played an important role in antibiotic uptake and translocation. Antibiotic uptake by plants depends on antibiotic, plant and soil. These results confirmed the capability of DGT in determining antibiotic bioavailability for the first time. This work provided a simple and powerful tool for environmental risk evaluation of antibiotics in soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2023.130935 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!