Mesophotic coral ecosystems may serve as a refuge for reef-building corals to survive the ongoing climate change. Distribution of coral species changes during larval dispersal. However, the acclimation potential in the early life stages of corals at different depths is unknown. This study investigated the acclimation potential of four shallow Acropora species at different depths via the transplantation of larvae and early polyps settled on tiles to 5, 10, 20, and 40 m depths. We then examined physiological parameters, such as size, survival, growth rate, and morphological characteristics. The survival and size of juveniles of A. tenuis and A. valida at 40 m depth were significantly higher than those at other depths. In contrast, A. digitifera and A. hyacinthus showed higher survival rates at shallow depths. The morphology (i.e., size of the corallites) also varied among the depths. Collectively, the shallow coral larvae and juveniles displayed substantial plasticity at depth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2023.114698 | DOI Listing |
Planta
January 2025
Institute of Plant Biology, National Taiwan University, Taipei, Taiwan.
PME12-mutated plants displayed altered stomatal characteristics and susceptibility to ABA-induced closure. Despite changes in PME activity, the mutant exhibited enhanced thermotolerance. These findings suggest a complex interplay between pectin methylesterification, ABA response, and stomatal function, contributing to plant adaptation to heat stress.
View Article and Find Full Text PDFConserv Physiol
January 2025
Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada.
Assessing how at-risk species respond to co-occurring stressors is critical for predicting climate change vulnerability. In this study, we characterized how young-of-the-year White Sturgeon () cope with warming and low oxygen (hypoxia) and investigated whether prior exposure to one stressor may improve the tolerance to a subsequent stressor through "cross-tolerance". Fish were acclimated to five temperatures within their natural range (14-22°C) for one month prior to assessment of thermal tolerance (critical thermal maxima, CTmax) and hypoxia tolerance (incipient lethal oxygen saturation, ILOS; tested at 20°C).
View Article and Find Full Text PDFJ Fish Biol
January 2025
Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon (INPA), Manaus, Brazil.
The tambaqui (Colossoma macropomum, G. Cuvier 1818) thrives both in the ion-poor waters of the Amazon and in commercial aquaculture. In both, environmental conditions can be harsh due to low ion levels, occasional high salt challenges (in aquaculture), low pH, extreme PO levels (hypoxia and hyperoxia), high PCO levels (hypercapnia), high ammonia levels (in aquaculture), and high and low temperatures.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
January 2025
Department of Biology, University of Ottawa, K1N6N5, 20 Marie Curie, Ottawa, ON, Canada. Electronic address:
The occurrence of environmental hypoxia in freshwater and marine aquatic systems has increased over the last century and is predicted to further increase with climate change. As members of the largest extant vertebrate group, freshwater fishes, and to a much lesser extent marine fishes, are vulnerable to increased occurrence of hypoxia. This is important as fishes render important ecosystem services and have important cultural and economic roles.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
College of Agricultural and Environmental Sciences, University of Georgia, 30223, Griffin, GA, USA.
In some peanut (Arachis hypogaea L.) producing regions, growth and photosynthesis-limiting low and high temperature extremes are common. Heat acclimation potential of photosynthesis and respiration is a coping mechanism that is species-dependent and should be further explored for peanut.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!