Ultrafast light sources have become an indispensable tool to access and understand transient phenomenon in material science. However, a simple and easy-to-implement method for harmonic selection, with high transmission efficiency and pulse duration conservation, is still a challenge. Here we showcase and compare two approaches for selecting the desired harmonic from a high harmonic generation source while achieving the above goals. The first approach is the combination of extreme ultraviolet spherical mirrors with transmission filters and the second approach uses a normal-incidence spherical grating. Both solutions target time- and angle-resolved photoemission spectroscopy with photon energies in the 10-20 eV range but are relevant for other experimental techniques as well. The two approaches for harmonic selection are characterized in terms of focusing quality, photon flux, and temporal broadening. It is demonstrated that a focusing grating is able to provide much higher transmission as compared to the mirror+filter approach (3.3 times higher for 10.8 eV and 12.9 times higher for 18.1 eV), with only a slight temporal broadening (6.8% increase) and a somewhat larger spot size (∼30% increase). Overall, our study establishes an experimental perspective on the trade-off between a single grating normal incidence monochromator design and the use of filters. As such, it provides a basis for selecting the most appropriate approach in various fields where an easy-to-implement harmonic selection from high harmonic generation is needed.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.478319DOI Listing

Publication Analysis

Top Keywords

harmonic selection
12
ultrafast light
8
light sources
8
selection high
8
high harmonic
8
harmonic generation
8
temporal broadening
8
times higher
8
harmonic
6
efficient low-density
4

Similar Publications

The mechanical properties of music wire are contingent upon its microstructure, which in turn influences its applications in music. Chinese stringed instruments necessitate exacting standards for comprehensive performance indexes, particularly with regard to the strength, resilience, and rigidity of the musical steel wires, which differ from the Western approach to musical wire. In this study, SWP-B music wire was selected for investigation through metal heat treatment, which was employed to regulate its microstructure characteristics.

View Article and Find Full Text PDF

This paper focuses on the theoretical and analytical modeling of a novel seismic isolator termed the Passive Friction Mechanical Metamaterial Seismic Isolator (PFSMBI) system, which is designed for seismic hazard mitigation in multi-story buildings. The PFSMBI system consists of a lattice structure composed of a series of identical small cells interconnected by layers made of viscoelastic materials. The main function of the lattice is to shift the fundamental natural frequency of the building away from the dominant frequency of earthquake excitations by creating low-frequency bandgaps (FBGs) below 20 Hz.

View Article and Find Full Text PDF

Deciphering the abnormal IR spectral density of phthalic acid dimer crystals: Unveiling the role of the dynamical effects of the Davydov coupling and the mechanisms of relaxation.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Physics Department, College of Science, King Faisal University, Al Ahsa, 31982, Saudi Arabia. Electronic address:

To consistently determine the anomalous characteristics of phthalic acid crystal (PAC) derivatives, we performed quantum dynamics simulations of the infrared spectral density of the h-PAC and d-PAC isotopomers that show up in the H/D isotopic frequency domain at two different temperatures viz. 77 and 298 K. A theoretical framework explaining the dynamical cooperative interactions within the hydrogen bonds (HBs) in the PAC crystals across a simulation of IR spectral density of the stretching band was developed.

View Article and Find Full Text PDF

The dynamics of neuronal systems are characterized by hallmark features such as oscillations and synchrony. However, it has remained unclear whether these characteristics are epiphenomena or are exploited for computation. Due to the challenge of selectively interfering with oscillatory network dynamics in neuronal systems, we simulated recurrent networks of damped harmonic oscillators in which oscillatory activity is enforced in each node, a choice well supported by experimental findings.

View Article and Find Full Text PDF

In this paper, a high speed slotted solid-rotor induction motor (SSRIM) with rated power of 15 kW and rated speed of 120krpm is studied, and its electromagnetic performance and rotor mechanical structure are optimized. First, according to the empirical formula of motor design, the volume size of the motor is determined. Then, by constructing a two-dimensional finite element model, the slot matching scheme and coil pitch are optimized, and the influence of different slot matching scheme and coil pitch on the output torque and harmonics of the motor is compared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!