We present a reconfigurable ultra-broadband mode converter, which consists of a two-mode fiber (TMF) and pressure-loaded phase-shifted long-period alloyed waveguide grating. We design and fabricate the long-period alloyed waveguide gratings (LPAWG) with SU-8, chromium, and titanium via the photo-lithography and electric beam evaporation technique. With the help of the pressure loaded or released from the LPAWG onto the TMF, the device can realize reconfigurable mode conversion between the LP mode and the LP mode in the TMF, which is weak sensitive to the state of polarization. The mode conversion efficiency larger than 10 dB can be achieved with operation wavelength range of about 105 nm, which ranges from 1501.9 nm to 1606.7 nm. The proposed device can be further used in the large bandwidth mode division multiplexing (MDM) transmission and optical fiber sensing system based on few-mode fibers.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.480362DOI Listing

Publication Analysis

Top Keywords

long-period alloyed
12
alloyed waveguide
12
reconfigurable ultra-broadband
8
ultra-broadband mode
8
mode converter
8
two-mode fiber
8
pressure-loaded phase-shifted
8
phase-shifted long-period
8
waveguide grating
8
mode conversion
8

Similar Publications

Thin-film membranes of Pd-Ag and Pd-Cu alloys capable of releasing hydrogen in a wide temperature range have been developed. The surface activation of the membranes with a nanostructured coating made it possible to intensify hydrogen transport through Pd-containing membranes at low temperatures. This effect was achieved by accelerating limiting surface processes by increasing the active area of the membrane.

View Article and Find Full Text PDF

The formation criteria of the LPSO phase are important for the design of long-period stacking-ordered (LPSO) Mg alloys. This work focuses on Type I LPSO Mg-Y-X alloys and attempts to explore the formation criteria of the LPSO phase from the perspective of liquid-solid correlation. With the aid of molecular dynamics simulation, liquid Mg-Y-X alloys are investigated to obtain the common liquid characteristics from the reported Type I LPSO Mg-Y-X alloys.

View Article and Find Full Text PDF

Mg-Y-Zn-Al alloys processed by the rapidly solidified ribbon consolidation (RSRC) technique are candidate materials for structural applications due to their improved mechanical performance. Their outstanding mechanical strength is attributed to solute-enriched stacking faults (SESFs), which can form cluster-arranged layers (CALs) and cluster-arranged nanoplates (CANaPs) or complete the long-period stacking ordered (LPSO) phase. The thermal stability of these solute arrangements strongly influences mechanical performance at elevated temperatures.

View Article and Find Full Text PDF

Mg-Gd-Y-Zn-Mn (MVWZ842) is a kind of high rare earth magnesium alloy with high strength, high toughness and multi-scale strengthening mechanisms. After heat treatment, the maximum tensile strength of MVWZ842 alloy is more than 550 MPa, and the elongation is more than 5%. Because of its great mechanical properties, MVWZ842 has broad application potential in aerospace and rail transit.

View Article and Find Full Text PDF

Microstructure, mechanical, in vitro and in vivo behavior of extruded Mg alloys with varying Zn/Gd ratios, Mg-2Gd-2Zn-0.5Zr (Zn/Gd = 1), Mg-2Gd-6Zn-0.5Zr (Zn/Gd = 3), and Mg-10Gd-1Zn-0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!