Lanthanide-based (Ln) luminescent materials are ideal candidates for use in fluorescence intracellular temperature sensing. However, it remains a great challenge to obtain a Ln-ratiometric fluorescence thermometer with high sensitivity and quantum yield in an aqueous environment. Herein, a cationic Eu-metallopolymer was synthesized via the coordination of Eu(TTA)·2HO with an AIE active amphipathic polymer backbone that contains APTMA ((3-acrylamidopropyl) trimethylammonium) and NIPAM (-isopropylacrylamide) units, which can self-assemble into nanoparticles in water solution with APTMA and NIPAM as the hydrophilic shell. This polymer exhibited highly efficient dual-emissive white-light emission (Φ = 34.3%). Particularly, when the temperature rises, the NIPAM units will transform from hydrophilic to hydrophobic in the spherical core of the nanoparticle, while the VTPE units are moved from inside the nanoparticle to the shell, activating its nonradiative transition channel and thereby decreasing its energy transfer to Eu centers, endowing the Eu-metallopolymer with an extremely high temperature sensing sensitivity within the physiological temperature range. Finally, the real-time monitoring of the intracellular temperature variation is further conducted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c00478 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!