One of the consequences of mining is the release of heavy metals into the environment, especially water bodies. Phytoremediation of areas contaminated by heavy metals using Vetiver grass and Indian mustard is cost-effective and environmentally friendly. This study aimed at enhancing remediation of heavy metal contaminated water through the simultaneous hybrid application of clay minerals (attapulgite and bentonite) and Vetiver grass or Indian mustard. A 21-day greenhouse experiment was carried out to investigate the effectiveness of the clay minerals to improve heavy metal phytoremediation. The highest accumulation of aluminium (Al) by Vetiver grass was 371.8 mg/kg in the BT2.5VT treatment, while for Mn, the highest accumulation of 34.71 mg/kg was observed in the AT1VT treatment. However, Indian mustard showed no significant uptake of heavy metals, but suffered heavy metal toxicity despite the addition of clay minerals. From this study, it was evident that bentonite added at 2.5% (w/v) could improve the phytoremediation capacity of Vetiver grass for Al and Mn polluted water. The current laboratory-scale findings provided a basis for field trials earmarked for remediation in a post-mining coal environment in South Africa. This remediation approach can also be adopted in other places.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10119195PMC
http://dx.doi.org/10.1007/s11356-023-26083-5DOI Listing

Publication Analysis

Top Keywords

vetiver grass
20
indian mustard
16
heavy metal
16
clay minerals
16
grass indian
12
heavy metals
12
metal contaminated
8
contaminated water
8
application clay
8
highest accumulation
8

Similar Publications

Textile wastewater poses significant risks if discharged untreated, especially due to the presence of synthetic dyes, salts, and heavy metals. As a result, constructed wetlands have emerged as a promising solution for sustainable textile wastewater management. In this context, this study evaluates a micro-scale vertical subsurface flow constructed wetland (VSSFCW) for treating textile wastewater.

View Article and Find Full Text PDF

This study evaluates the effectiveness of phytoremediation strategies in mitigating the environmental impacts of gold mine tailings through a bibliometric and systematic review. Utilizing the PRISMA methodology, 45 primary research articles were selected and analyzed, highlighting key rends and insights in phytoremediation research. The review spans over two decades of research, with a notable annual growth rate of 2.

View Article and Find Full Text PDF
Article Synopsis
  • Metal toxicity impacts plant physiology, and mycorrhizal fungi (AMF) offer a new eco-friendly method to improve soil contaminated by tannery effluents, which are high in harmful metals like chromium and cadmium.* -
  • A study was conducted using vetiver grass and three strains of AMF on contaminated soil from Tamil Nadu, revealing that AMF inoculation, particularly with R. intraradices, boosted plant growth and biomass significantly compared to other treatments.* -
  • Results indicated that R. intraradices improved the phytoextraction of metals, reduced their movement into plant shoots, and increased carbon storage in vetiver, enhancing overall carbon sequestration in contaminated soil.*
View Article and Find Full Text PDF
Article Synopsis
  • The study explored the effects of Vetiveria zizanioides oil (VET) on oxidative stress and cell death in rats that experienced seizures induced by pentylenetetrazol (PTZ).
  • Four groups of rats were observed: a control group, a PTZ only group, and two groups receiving different doses of VET alongside the PTZ treatment.
  • Findings indicated that PTZ increased seizure activity and caused oxidative stress, but treatment with VET significantly reduced these negative effects and improved the overall condition of the rats' brain tissues.
View Article and Find Full Text PDF

The role of plant uptake in total phosphorous and total nitrogen removal in vegetated bioretention cells using vetiver and cattail.

Chemosphere

September 2024

State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China. Electronic address:

Bioretention cells have emerged as a prominent strategy for mitigating pollutant loads within urban stormwater runoff. This study delves into the role of plant uptake in the simultaneous removal of nitrogen and phosphorus compounds within these systems. Three bioretention cells-CP, P1, and P2-were constructed using local soil, C33 sand, and gravel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!