Background: This study aimed to predict myocardial ischemia (MIS) by constructing models with imaging features, CT-fractional flow reserve (CT-FFR), pericoronary fat attenuation index (pFAI), and radiomics based on coronary computed tomography angiography (CCTA).
Methods And Results: This study included 96 patients who underwent CCTA and single photon emission computed tomography-myocardial perfusion imaging (SPECT-MPI). According to SPECT-MPI results, there were 72 vessels with MIS in corresponding supply area and 105 vessels with no-MIS. The conventional model [lesion length (LL), MDS (maximum stenosis diameter × 100% / reference vessel diameter), MAS (maximum stenosis area × 100% / reference vessel area) and CT value], radiomics model (radiomics features), and multi-faceted model (all features) were constructed using support vector machine. Conventional and radiomics models showed similar predictive efficacy [AUC: 0.76, CI 0.62-0.90 vs. 0.74, CI 0.61-0.88; p > 0.05]. Adding pFAI to the conventional model showed better predictive efficacy than adding CT-FFR (AUC: 0.88, CI 0.79-0.97 vs. 0.80, CI 0.68-0.92; p < 0.05). Compared with conventional and radiomics model, the multi-faceted model showed the highest predictive efficacy (AUC: 0.92, CI 0.82-0.98, p < 0.05).
Conclusion: pFAI is more effective for predicting MIS than CT-FFR. A multi-faceted model combining imaging features, CT-FFR, pFAI, and radiomics is a potential diagnostic tool for MIS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12350-023-03221-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!