Recognition of humans from biological motion in infants.

Atten Percept Psychophys

Department of Psychology, Chuo University, Tokyo, Japan.

Published: November 2023

Infant studies have suggested that the detection of biological motion (BM) might be an innate capacity, based on newborns' spontaneous preference for BM. However, it is unclear if, like adults, infants recognize humans from BM and are able to build the representation of bodies and faces. To address this issue, we tested whether exposure to BM influences subsequent face recognition in 3- to 8-month-old infants. After familiarization with a point-light walker (PLW) of either a female or a male, the infant's preference for female and male faces was measured. If infants can build the representation of not only the body but also the face from PLWs, the familiarization effect of gender induced by the PLW might be generalized to faces. We found that infants at 7 to 8 months looked for longer at the face whose gender was opposite to that of the PLW, whereas 3- to 4- and 5- to 6-month-old infants did not. These results suggest that infants can access the representation of humans from BM and extract gender, which is shared across bodies and faces, from at least 7 to 8 months of age.

Download full-text PDF

Source
http://dx.doi.org/10.3758/s13414-023-02675-8DOI Listing

Publication Analysis

Top Keywords

biological motion
8
build representation
8
bodies faces
8
female male
8
infants
7
recognition humans
4
humans biological
4
motion infants
4
infants infant
4
infant studies
4

Similar Publications

In plants, sugar will eventually be exported transporters (SWEETs) facilitate the translocation of mono- and disaccharides across membranes and play a critical role in modulating responses to gibberellin (GA3), a key growth hormone. However, the dynamic mechanisms underlying sucrose and GA3 binding and transport remain elusive. Here, we employed microsecond-scale molecular dynamics (MD) simulations to investigate the influence of sucrose and GA3 binding on SWEET13 transporter motions.

View Article and Find Full Text PDF

Cells display a range of mechanical activities generated by motor proteins powered through catalysis. This raises the fundamental question of how the acceleration of a chemical reaction can enable the energy released from that reaction to be transduced (and, consequently, work to be done) by a molecular catalyst. Here we demonstrate the molecular-level transduction of chemical energy to mechanical force in the form of the powered contraction and powered re-expansion of a cross-linked polymer gel driven by the directional rotation of artificial catalysis-driven molecular motors.

View Article and Find Full Text PDF

Anecdotally, horses' gaits sound rhythmic. Are they really? In this study, we quantified the motor rhythmicity of horses across three different gaits (walk, trot, and canter). For the first time, we adopted quantitative tools from bioacoustics and music cognition to quantify locomotor rhythmicity.

View Article and Find Full Text PDF

Gibbons, a type of lesser ape, are brachiators but also walk bipedally and without forelimb assistance, not only on the ground but also on tree branches. The arboreal bipedal walking strategy of the gibbons has been studied in previous studies in relation to two-dimensional (2D) kinematic analysis. However, because tree branches and the ground differ greatly in width, leading to a constrained foot contact point on the tree branches, gibbons must adjust their 3D joint motions of trunk and hindlimb on the tree branches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!