Purpose: Bone tumours must be surgically excised in one piece with a margin of healthy tissue. The unique nature of each bone tumour case is well suited to the use of patient-specific implants, with additive manufacturing allowing production of highly complex geometries. This work represents the first assessment of the combination of surgical robotics and patient-specific additively manufactured implants.

Methods: The development and evaluation of a robotic system for bone tumour excision, capable of milling complex osteotomy paths, is described. The developed system was evaluated as part of an animal trial on 24 adult male sheep, in which robotic bone excision of the distal femur was followed by placement of patient-specific implants with operative time evaluated. Assessment of implant placement accuracy was completed based on post-operative CT scans.

Results: A mean overall implant position error of 1.05 ± 0.53 mm was achieved, in combination with a mean orientation error of 2.38 ± 0.98°. A mean procedure time (from access to implantation, excluding opening and closing) of 89.3 ± 25.25 min was observed, with recorded surgical time between 58 and 133 min, with this approximately evenly divided between robotic (43.9 ± 15.32) and implant-based (45.4 ± 18.97) tasks.

Conclusions: This work demonstrates the ability for robotics to achieve repeatable and precise removal of complex bone volumes of the type that would allow en bloc removal of a bone tumour. These robotically created volumes can be precisely filled with additively manufactured patient-specific implants, with minimal gap between cut surface and implant interface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10497442PMC
http://dx.doi.org/10.1007/s11548-023-02848-8DOI Listing

Publication Analysis

Top Keywords

additively manufactured
12
bone tumour
12
patient-specific implants
12
manufactured patient-specific
8
bone
6
patient-specific
5
robot-assisted implantation
4
implantation additively
4
patient-specific orthopaedic
4
implants
4

Similar Publications

This paper provides a thorough analysis of recent advancements and emerging trends in the integration of metal additive manufacturing (AM) within orthopedic implant development. With an emphasis on the use of various metals and alloys, including titanium, cobalt-chromium, and nickel-titanium, the review looks at their characteristics and how they relate to the creation of various orthopedic implants, such as spinal implants, hip and knee replacements, and cranial-facial reconstructions. The study highlights how metal additive manufacturing (AM) can revolutionize the field by enabling customized implant designs that take patient anatomical variances into account.

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the efficacy and safety of a digitally guided dual technique during esthetic crown lengthening surgery. In addition, patient satisfaction and patient-reported outcomes were assessed.

Materials And Methods: A prospective case series study was conducted.

View Article and Find Full Text PDF

Purpose: To evaluate image quality (IQ) of for-processing (raw) and for-presentation (clinical) radiography images, under different exposure conditions and digital image post-processing algorithms, using a phantom that enables multiple detection tasks.

Methods: A modified version of the radiography phantom described in the IAEA Human Health Series No. 39 publication was constructed, incorporating six additional Aluminum (Al) targets of thicknesses both smaller and larger than the standard one.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are widely investigated for their implications in cell-cell signaling, immune modulation, disease pathogenesis, cancer, regenerative medicine, and as a potential drug delivery vector. However, maintaining integrity and bioactivity of EVs between Good Manufacturing Practice separation/filtration and end-user application remains a consistent bottleneck towards commercialization. Milk-derived extracellular vesicles (mEVs), separated from bovine milk, could provide a relatively low-cost, scalable platform for large-scale mEV production; however, the reliance on cold supply chain for storage remains a logistical and financial burden for biologics that are unstable at room temperature.

View Article and Find Full Text PDF

Anti-furfurative comparison of Kesh Kanti-Herbal Shampoos and synthetic shampoos against Malassezia furfur for dandruff management.

AMB Express

January 2025

Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Near Bahadrabad, Haridwar, 249405, Uttarakhand, India.

Malassezia furfur is the primary etiological agent of dandruff (Pityriasis capitis). Although herbal shampoos are preferred for their natural, mild ingredients over synthetic counterparts, they are often perceived as less effective in managing flaky scalp conditions or furfuration causing dandruff. The study compares the antifungal efficacy of herbal and synthetic shampoos against M.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!