Background: Genome-wide association studies have identified numerous human host genetic risk variants that play a substantial role in the host immune response to SARS-CoV-2. Although these genetic risk variants significantly increase the severity of COVID-19, their influence on body systems is poorly understood. Therefore, we aim to interpret the biological mechanisms and pathways associated with the genetic risk factors and immune responses in severe COVID-19. We perform a deep analysis of previously identified risk variants and infer the hidden interactions between their molecular networks through disease mapping and the similarity of the molecular functions between constructed networks.
Results: We designed a four-stage computational workflow for systematic genetic analysis of the risk variants. We integrated the molecular profiles of the risk factors with associated diseases, then constructed protein-protein interaction networks. We identified 24 protein-protein interaction networks with 939 interactions derived from 109 filtered risk variants in 60 risk genes and 56 proteins. The majority of molecular functions, interactions and pathways are involved in immune responses; several interactions and pathways are related to the metabolic and cardiovascular systems, which could lead to multi-organ complications and dysfunction.
Conclusions: This study highlights the importance of analyzing molecular interactions and pathways to understand the heterogeneous susceptibility of the host immune response to SARS-CoV-2. We propose new insights into pathogenicity analysis of infections by including genetic risk information as essential factors to predict future complications during and after infection. This approach may assist more precise clinical decisions and accurate treatment plans to reduce COVID-19 complications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9977643 | PMC |
http://dx.doi.org/10.1186/s40246-023-00454-y | DOI Listing |
Ann Med
December 2025
Department of General Practice, Hainan affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China.
Background: Although existing studies have identified some genetic loci associated with chronic obstructive pulmonary disease (COPD) susceptibility, many variants remain to be discovered. The aim of this study was to further explore the potential relationship between single nucleotide polymorphisms (SNPs) and COPD risk.
Methods: Nine hundred and ninety-six subjects were recruited (498 COPD cases and 498 healthy controls).
Environ Toxicol Chem
January 2025
Osnabrück University, Osnabrück, Lower Saxony, Germany.
In regulatory aquatic risk assessment, toxicokinetic-toxicodynamic (TKTD) methods, such as the generalized unified threshold model of survival (GUTS), are already established and considered ready for use, whereas TKTD methods for aboveground terrestrial species, like arthropods, are less developed and currently not intended for risk assessment. This could be due to the fact that exposure in aboveground terrestrial systems is more event-based (feeding, contact, overspray, etc.), whereas exposure in aquatic systems is simply related to substance concentrations in the surrounding water.
View Article and Find Full Text PDFGenet Med
January 2025
Genomics Ethics, and Translational Research Program, RTI International, Research Triangle Park, NC; Department of Translational and Applied Genomics, Kaiser Permanente Center for Health Research, Portland, OR. Electronic address:
Purpose: Limited evidence evaluates parents' perceptions of their child's clinical genomic sequencing (GS) results, particularly among individuals from medically underserved groups. Five Clinical Sequencing Evidence-Generating Research (CSER) consortium studies performed GS in children with suspected genetic conditions with high proportions of individuals from underserved groups to address this evidence gap.
Methods: Parents completed surveys of perceived understanding, personal utility, and test-related distress after GS result disclosure.
Genet Med
January 2025
Newborn Screening Ontario, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada; Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa. Electronic address:
Purpose: Universal newborn hearing screening (UNHS) programs using audiometric techniques alone are limited in ability to detect non-congenital childhood permanent hearing loss (PHL). In 2019, Ontario launched universal newborn screening (NBS) for PHL risk factors: congenital cytomegalovirus (cCMV) and 22 common variants in GJB2 and SLC26A4. Here we describe our experience with genetic risk factor screening.
View Article and Find Full Text PDFFront Vet Sci
January 2025
Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China.
Introduction: The H9N2 avian influenza virus is widely disseminated in poultry and poses a zoonotic threat, despite vaccination efforts. Mutations at residue 198 of hemagglutinin (HA) are critical for antigenic variation and receptor-binding specificity, but the underlying molecular mechanisms remain unclear. This study explores the molecular mechanisms by which mutations at the HA 198 site affect the antigenicity, receptor specificity, and binding affinity of the H9N2 virus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!