Using machine learning to anticipate tipping points and extrapolate to post-tipping dynamics of non-stationary dynamical systems.

Chaos

The Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 26742, USA.

Published: February 2023

The ability of machine learning (ML) models to "extrapolate" to situations outside of the range spanned by their training data is crucial for predicting the long-term behavior of non-stationary dynamical systems (e.g., prediction of terrestrial climate change), since the future trajectories of such systems may (perhaps after crossing a tipping point) explore regions of state space which were not explored in past time-series measurements used as training data. We investigate the extent to which ML methods can yield useful results by extrapolation of such training data in the task of forecasting non-stationary dynamics, as well as conditions under which such methods fail. In general, we find that ML can be surprisingly effective even in situations that might appear to be extremely challenging, but do (as one would expect) fail when "too much" extrapolation is required. For the latter case, we show that good results can potentially be obtained by combining the ML approach with an available inaccurate conventional model based on scientific knowledge.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0131787DOI Listing

Publication Analysis

Top Keywords

training data
12
machine learning
8
non-stationary dynamical
8
dynamical systems
8
learning anticipate
4
anticipate tipping
4
tipping points
4
points extrapolate
4
extrapolate post-tipping
4
post-tipping dynamics
4

Similar Publications

Objectives: To incorporate a longitudinal palliative care curriculum into obstetrics and gynecology (Ob-Gyn) residency that could become standardized to ensure competencies in providing end of life (EOL) care.

Methods: This was a prospective cohort study conducted among 23 Ob-Gyn residents at a tertiary training hospital from 2021 to 2022. A curriculum intervention was provided via lecture and simulation.

View Article and Find Full Text PDF

Teaching death, spirituality, and palliative care to university students: Novel pedagogical approach.

Palliat Support Care

January 2025

Department of Theology and Religious Education, College of Liberal Arts, Manila, Philippines.

Teaching death, spirituality, and palliative care equips students with critical skills and perspectives for holistic patient care. This interdisciplinary approach fosters empathy, resilience, and personal growth while enhancing competence in end-of-life care. Using experiential methods like simulations and real patient interactions, educators bridge theory and practice.

View Article and Find Full Text PDF

Single-cell RNA sequencing (scRNA-seq) offers remarkable insights into cellular development and differentiation by capturing the gene expression profiles of individual cells. The role of dimensionality reduction and visualization in the interpretation of scRNA-seq data has gained widely acceptance. However, current methods face several challenges, including incomplete structure-preserving strategies and high distortion in embeddings, which fail to effectively model complex cell trajectories with multiple branches.

View Article and Find Full Text PDF

Deep learning-based design and experimental validation of a medicine-like human antibody library.

Brief Bioinform

November 2024

Biotherapeutics Molecule Discovery, Boehringer Ingelheim Pharmaceutical Inc., 900 Ridgebury Road, Ridgefield, CT 06877, United States.

Antibody generation requires the use of one or more time-consuming methods, namely animal immunization, and in vitro display technologies. However, the recent availability of large amounts of antibody sequence and structural data in the public domain along with the advent of generative deep learning algorithms raises the possibility of computationally generating novel antibody sequences with desirable developability attributes. Here, we describe a deep learning model for computationally generating libraries of highly human antibody variable regions whose intrinsic physicochemical properties resemble those of the variable regions of the marketed antibody-based biotherapeutics (medicine-likeness).

View Article and Find Full Text PDF

Lipoprotein(a) Atherosclerotic Cardiovascular Disease Risk Score Development and Prediction in Primary Prevention From Real-World Data.

Circ Genom Precis Med

January 2025

Mary and Steve Wen Cardiovascular Division, Department of Medicine, University of California, Los Angeles. (W.F., N.D.W.).

Background: Lp(a; Lipoprotein[a]) is a predictor of atherosclerotic cardiovascular disease (ASCVD); however, there are few algorithms incorporating Lp(a), especially from real-world settings. We developed an electronic health record (EHR)-based risk prediction algorithm including Lp(a).

Methods: Utilizing a large EHR database, we categorized Lp(a) cut points at 25, 50, and 75 mg/dL and constructed 10-year ASCVD risk prediction models incorporating Lp(a), with external validation in a pooled cohort of 4 US prospective studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!