The formation and repair of double-strand breaks induced in DNA by MMS was studied in haploid wild type and MMS-sensitive rad6 mutant strains of Saccharomyces cerevisiae with the use of the neutral and alkaline sucrose sedimentation technique. A similar decrease in average molecular weight of double-stranded DNA from 5--6 X 10(8) to 1--0.7 X 10(8) daltons was observed following treatment with 0.5% MMS in wild type and mutant strains. Incubation of cells after MMS treatment in a fresh drug-free growing medium resulted in repair of double-strand breaks in the wild type stain, but only in the exponential phase of growth. No repair of double-strand breaks was found when cells of the wild type strain were synchronized in G-1 phase by treatment with alpha factor, although DNA single-strand breaks were still efficiently repaired. Mutant rad6 which has a very low ability to repair MMS-induced single-strand breaks, did not repair double-strand breaks regardless of the phase of growth. These results suggest that (1) repair of double-strand breaks requires the ability for single-strand breaks repair, (2) rejoining of double-strand breaks requires the availability of two homologous DNA molecules, this strongly supports the recombinational model of DNA repair.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00267420DOI Listing

Publication Analysis

Top Keywords

double-strand breaks
28
repair double-strand
20
wild type
16
single-strand breaks
12
breaks
10
repair
9
repair mms-induced
8
saccharomyces cerevisiae
8
mutant strains
8
phase growth
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!