Francium ion source with novel methods of target heating and beam characterization.

Rev Sci Instrum

Center for Nuclear Study, Graduate School of Science, The University of Tokyo, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.

Published: February 2023

We have developed a novel ion source and beam diagnostic system for the production and detection of radioactive francium (Fr) isotopes. The Fr ions are produced using a fusion-evaporation reaction at the RIKEN Nishina Center, Japan. The installation of an infrared heater has enabled a precise and rapid control of the target temperature, and the newly developed diagnostic system allows for a quantitative characterization of the extracted ion beam. With the new system, an analysis of the Fr208-211 isotopes has been performed. Additionally, the flux of Fr210 ions has been estimated as 6.7 × 10 s corresponding to an extraction efficiency of 24.5% and a beam purity of 1.6 × 10.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0118754DOI Listing

Publication Analysis

Top Keywords

ion source
8
diagnostic system
8
francium ion
4
source novel
4
novel methods
4
methods target
4
target heating
4
beam
4
heating beam
4
beam characterization
4

Similar Publications

Fluoride (F), as a natural element found in a wide range of sources such as water and certain foods, has been proven to be beneficial in preventing dental caries, but concerns have been raised regarding its potential deleterious effects on overall health. Sodium fluoride (NaF), another form of F, has the ability to accumulate in reproductive organs and interfere with hormonal regulation and oxidative stress pathways, contributing to reproductive toxicity. While the exact mechanisms of F-induced reproductive toxicity are not fully understood, this review aims to elucidate the mechanisms involved in testicular and ovarian injury.

View Article and Find Full Text PDF

Fluorescence-enhanced detection of sulfide ions through tuning the structure-activity relationship of gold nanoclusters.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China. Electronic address:

The concentration of S is a vital environmental indicator for evaluating the quality of source water, surface water, and wastewater, and it has a significant impact on biological systems, particularly human health. Therefore, it is crucial to detect S selectively and sensitively. In this study, we developed a simple and rapid one-pot method to prepare a gold nanocluster (BSA-AuNCs) probe for fluorescence-enhanced detection of S toxemia and analyzed the morphological characteristics of BSA-AuNCs and its complex with S using various characterization techniques.

View Article and Find Full Text PDF

The oceanic dissolved organic matter (DOM) reservoir is one of Earth's largest carbon pools, yet the factors contributing to its recalcitrance and persistence remain poorly understood. Here, we employed ultra-high resolution mass spectrometry (UHRMS) to examine the molecular dynamics of DOM from terrestrial, marine and mixed sources during bio-incubation over weekly, monthly, and one year time spans. Using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), we classified DOM into three distinct categories (Consumed, Resistant and Product) based on their presence or absence at the start and end of the incubation.

View Article and Find Full Text PDF

One-step high-pressure and high-temperature direct aqueous mineral carbonation of tailings derived from mining of Platinum Group Metals in South Africa requires a fundamental understanding of the reactivity of the most dominant mineral phases, i.e. pyroxene and plagioclase (66 wt.

View Article and Find Full Text PDF

Unlabelled: Dental caries remains a prevalent chronic disease driven by dysbiosis in the oral biofilm, with playing a central role in its pathogenesis.

Objective: This study aimed to assess the effect of D-tagatose on cariogenic risk by analyzing randomized clinical trials (RCTs).

Methods: A systematic literature review was conducted targeting RCTs published up to 2024 in eight databases and two gray literature sources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!