The combined effect of grain size variation and plastic deformation on the acoustic nonlinearity parameter has been investigated in an austenitic stainless-steel material of grade 304. The nonlinear behavior of this parameter with grain growth has deviated to linear fit with deformation. This is due to the interaction of elastic waves with the strain-induced dislocation substructure in the grains. The normalized mean square strain of the deformed specimens has been estimated through angle dispersive x-ray diffraction studies using a synchrotron source, and this has been correlated with the change in the acoustic non-linearity parameter with deformation. The nonlinearity parameter is found to be very sensitive to the plastic deformation even in the presence of grain size variations. The results infer that the variations in the nonlinearity parameter can be used to have an estimate of the extent of localized deformations often occurring during the fabrication of metallic components.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0136642DOI Listing

Publication Analysis

Top Keywords

nonlinearity parameter
16
plastic deformation
12
grain size
12
size variation
8
acoustic nonlinearity
8
parameter
6
deformation
5
experimental investigation
4
investigation combined
4
combined plastic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!