Background: Split liver transplantation permits the transplant of two recipients using a single donor liver. Liver splitting can be performed using the ex-vivo technique (more convenient), or the in-situ technique (shorter cold ischaemic time). We aimed to develop a technique for liver splitting during normothermic machine perfusion which combines the advantages of both techniques and permits graft assessment prior to transplant.
Methods: Human livers declined for transplantation were perfused at 36 °C using a modified-commercial perfusion machine. We developed a six-step method to split whole livers into left lateral segment grafts and extended right grafts. Both partial livers were then perfused on separate machines for individual assessment.
Results: Using our technique, 10 whole livers were successfully split during normothermic perfusion resulting in 20 partial grafts. Apart from a single graft which failed due to a technical error, all grafts survived for 24-h after splitting. Survival was demonstrated by lactate clearance, bile production and synthesis of coagulation factors.
Conclusions: Liver splitting during normothermic machine perfusion has the potential to revolutionise split liver transplantation. We describe a novel technique that reliably achieves two grafts from a single donor liver. This raises the possibility of semi-elective transplantation, and sophisticated graft assessment prior to implant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.hpb.2023.02.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!