Objective: The blood-brain barrier (BBB) is an obstacle for cerebral drug delivery. Controlled permeabilization of the barrier by external stimuli can facilitate the delivery of drugs to the brain. Acoustic Cluster Therapy (ACT®) is a promising strategy for transiently and locally increasing the permeability of the BBB to macromolecules and nanoparticles. However, the mechanism underlying the induced permeability change and subsequent enhanced accumulation of co-injected molecules requires further elucidation.

Methods: In this study, the behavior of ACT® bubbles in microcapillaries in the murine brain was observed using real-time intravital multiphoton microscopy. For this purpose, cranial windows aligned with a ring transducer centered around an objective were mounted to the skull of mice. Dextrans labeled with 2 MDa fluorescein isothiocyanate (FITC) were injected to delineate the blood vessels and to visualize extravasation.

Discussion: Activated ACT® bubbles were observed to alter the blood flow, inducing transient and local increases in the fluorescence intensity of 2 MDa FITC-dextran and subsequent extravasation in the form of vascular outpouchings. The observations indicate that ACT® induced a transient vascular leakage without causing substantial damage to the vessels in the brain.

Conclusion: The study gave novel insights into the mechanism underlying ACT®-induced enhanced BBB permeability which will be important considering treatment optimization for a safe and efficient clinical translation of ACT®.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultrasmedbio.2023.01.007DOI Listing

Publication Analysis

Top Keywords

real-time intravital
8
acoustic cluster
8
murine brain
8
mechanism underlying
8
act® bubbles
8
act®
5
intravital imaging
4
imaging acoustic
4
cluster therapy-induced
4
therapy-induced vascular
4

Similar Publications

Most gene therapies exert their actions via manipulation of hepatocytes (parenchymal cells) and the reasons behind the suboptimal performance of synthetic mRNA in non-parenchymal cells (NPC) such as Kupffer cells (KC), and liver macrophages, remain unclear. Here, the spatio-temporal distribution of mRNA encoding enhanced green fluorescent protein (Egfp), siRNA, or both co-encapsulated into lipid nanoparticles (LNP) in the liver in vivo using real-time intravital imaging is investigated. Although both KC and hepatocytes demonstrate comparable high and rapid uptake of mRNA-LNP and siRNA-LNP in vivo, the translation of Egfp mRNA occurs exclusively in hepatocytes during intravital imaging.

View Article and Find Full Text PDF

Despite decades of improvements in cytotoxic therapy, the current standard of care for locally advanced pancreatic cancer (LAPC) provides, on average, only a few months of survival benefit. Stereotactic Body Radiation Therapy (SBRT), a technique that accurately delivers high doses of radiation to tumors in fewer fractions, has emerged as a promising therapy to improve local control of LAPC; however, its effects on the tumor microenvironment and hypoxia remain poorly understood. To explore how SBRT affects pancreatic tumors, we combined an orthotopic mouse model of pancreatic cancer with an intravital microscopy platform to visualize changes to the in vivo tumor microenvironment in real-time.

View Article and Find Full Text PDF

Intravital imaging reveals glucose-dependent cilia movement in pancreatic islets in vivo.

Metabolism

February 2025

Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA. Electronic address:

Pancreatic islet cells harbor primary cilia, small sensory organelles that detect environmental changes to regulate hormone secretion and intercellular communication. While the sensory and signaling capacity of primary cilia are well-appreciated, it is less recognized that these organelles also possess active motility, including in dense multicellular tissues such as the pancreatic islet. In this manuscript, we use transgenic cilia reporter mice and an intravital imaging approach to quantitate primary cilia dynamics as it occurs in live mouse pancreatic islets.

View Article and Find Full Text PDF

Optical histopathology based on the nonlabeling analysis with multiphoton excitation imaging.

Pathol Int

December 2024

Department of Pathology, Graduate School of Medicine, Osaka University, Osaka, Japan.

Histopathological diagnosis is the definitive method for the evaluation of disease status; however, some problems need to be solved, such as invasiveness, time consumption, and difficulty in three-dimensional observation. To overcome these problems, a novel observation method, distinct from conventional histology, using tissue sections and glass slides is desirable. Fluorescence imaging of human tissues with multiphoton excitation imaging (MpEI), which was originally used for intravital imaging in biological research, is a promising method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!