Maintaining proper metabolite levels in a complex metabolic network is crucial for maintaining a high flux through the network. In this paper, we discuss major regulatory mechanisms over the Calvin Benson Cycle (CBC) with regard to their roles in conferring homeostasis of metabolite levels in CBC. These include: 1) Redox regulation of enzymes in the CBC on one hand ensures that metabolite levels stay above certain lower bounds under low light while on the other hand increases the flux through the CBC under high light. 2) Metabolite regulations, especially allosteric regulations of major regulatory enzymes, ensure the rapid up-regulation of fluxes to ensure sufficient amount of triose phosphate is available for end product synthesis and concurrently avoid phosphate limitation. 3) A balanced activities of enzymes in the CBC help maintain balanced flux through CBC; some innate product feedback mechanisms, in particular the ADP feedback regulation of GAPDH and F6P feedback regulation of FBPase, exist in CBC to achieve such a balanced enzyme activities and hence flux distribution in the CBC for greater photosynthetic efficiency. Transcriptional regulation and natural variations of enzymes controlling CBC metabolite homeostasis should be further explored to maximize the potential of engineering CBC for greater efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.semcdb.2023.02.009 | DOI Listing |
Breast Cancer Res
January 2025
Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road, Hangzhou, Zhejiang, China.
Background: Neoadjuvant chemotherapy (NACT) is the standard-of-care treatment for patients with locally advanced breast cancer (LABC), providing crucial benefits in tumor downstaging. Clinical parameters, such as molecular subtypes, influence the therapeutic impact of NACT. Moreover, severe adverse events delay the treatment process and reduce the effectiveness of therapy.
View Article and Find Full Text PDFBMC Vet Res
January 2025
Department of Poultry and Rabbit Diseases, Faculty of Veterinary Medicine, Aswan University, Aswan, 81528, Egypt.
Avian coccidiosis is one of the many disorders that seriously harm birds' digestive systems. Nowadays the light is shed on using Phytochemical/herbal medicines as alternative natural anti-coccidial chemical-free standards. Consequently, this study aimed to investigate the impact of lawsonia inermis powder (LIP), and Acacia nilotica aqueous extract (ANAE), on growth performance, serum biochemical, antioxidant status, cytokine biomarkers, total oocyst count and intestinal histopathology of broiler chickens challenged with coccidiosis.
View Article and Find Full Text PDFBMC Genomics
January 2025
College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China.
Background: Trimethylamine N-oxide (TMAO) is a metabolite produced by gut microbiota, and its potential impact on lipid metabolism in mammals has garnered widespread attention in the scientific community. Bovine fatty liver disease, a metabolic disorder that severely affects the health and productivity of dairy cows, poses a significant economic burden on the global dairy industry. However, the specific role and pathogenesis of TMAO in bovine fatty liver disease remain unclear, limiting our understanding and treatment of the condition.
View Article and Find Full Text PDFBMC Genomics
January 2025
Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, China.
Background: The fall armyworm (FAW) Spodoptera frugiperda, a highly invasive, polyphagous pest, poses a global agricultural threat. It has two strains, the C-corn and R-rice strains, each with distinct host preferences. This study compares detoxification enzyme gene families across these strains and related Spodoptera species to explore their adaptation to diverse host plant metabolites.
View Article and Find Full Text PDFBull Exp Biol Med
January 2025
Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia.
The optimal balance of the intestinal microbiota is considered to be an essential part of the human body that affects many metabolic processes. However, the exact role of the gut microbiota in metabolism is still not fully understood. To investigate the metabolic role of gut microbiota, the content of short-chain fatty acids and tryptophan metabolites was studied in mice with sodium dextran sulfate-induced colitis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!