Polyadenylation of canonical histone H3.1 in carcinogenesis.

Adv Pharmacol

Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States. Electronic address:

Published: March 2023

Canonical histone messenger RNAs (mRNAs) are transcribed during S phase and do not terminate with a poly(A) tail at the 3' end. Instead, the histone mRNAs display a stem-loop structure at their 3-end. Stem-loop-binding protein (SLBP) binds the stem-loop and regulates canonical histone mRNA metabolism. We previously demonstrated that exposure to arsenic, an environmental carcinogen, induces polyadenylation of canonical histone H3.1 mRNA, causing transformation of human cells in vitro. Arsenic decreased cellular levels of SLBP by inducing its proteasomal degradation and inhibiting SLBP transcription via epigenetic mechanisms. Similarly, we also reported that nickel and arsenic have similar effects on canonical histone mRNA transcription and translation. Most recently, we further demonstrated that bisphenols' exposure increased polyadenylation of canonical histone H3.1 mRNA possibly through down-regulation of SLBP expression. This facilitates the abnormal stability of at least one canonical histone isoform (H3.1), and also increases H3 protein levels. Excess expression of canonical histones have been shown to increase sensitivity to DNA damage as well as increase the frequency of missing chromosomes and induce genomic instability. Thus, polyadenylation of canonical histone mRNA following arsenic, nickel and bisphenols exposure may contribute to metal and bisphenol-induced carcinogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10268048PMC
http://dx.doi.org/10.1016/bs.apha.2022.08.003DOI Listing

Publication Analysis

Top Keywords

canonical histone
32
polyadenylation canonical
16
histone h31
12
histone mrna
12
histone
9
canonical
8
h31 mrna
8
mrna
5
polyadenylation
4
h31
4

Similar Publications

Predictive modelling of acute Promyelocytic leukaemia resistance to retinoic acid therapy.

Brief Bioinform

November 2024

Department of Biology, École Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France.

Acute Promyelocytic Leukaemia (APL) arises from an aberrant chromosomal translocation involving the Retinoic Acid Receptor Alpha (RARA) gene, predominantly with the Promyelocytic Leukaemia (PML) or Promyelocytic Leukaemia Zinc Finger (PLZF) genes. The resulting oncoproteins block the haematopoietic differentiation program promoting aberrant proliferative promyelocytes. Retinoic Acid (RA) therapy is successful in most of the PML::RARA patients, while PLZF::RARA patients frequently become resistant and relapse.

View Article and Find Full Text PDF

To maintain genome stability, proliferating cells must enact a program of telomere maintenance. While most tumors maintain telomeres through the action of telomerase, a subset of tumors utilize a DNA-templated process termed Alternative Lengthening of Telomeres or ALT. ALT is associated with mutations in the ATRX/DAXX/H3.

View Article and Find Full Text PDF

In eukaryotic nuclei, DNA is wrapped around an octamer of core histones to form nucleosomes. H1 binds to the linker DNA of nucleosome to form the chromatosome, the next structural unit of chromatin. Structural features on individual chromatosomes contribute to chromatin structure, but not fully characterized.

View Article and Find Full Text PDF

Exploring oncogenic roles and clinical significance of EZH2: focus on non-canonical activities.

Ther Adv Med Oncol

January 2025

Department of Molecular Biology of Cancer, Medical University of Lodz, Mazowiecka 6/8, Lodz 92-215, Poland.

The enhancer of zeste homolog 2 (EZH2) is a catalytic component of Polycomb repressive complex 2 (PRC2) mediating the methylation of histone 3 lysine 27 (H3K27me3) and hence the epigenetic repression of target genes, known as canonical function. Growing evidence indicates that EZH2 has non-canonical roles that are exerted as PRC2-dependent and PRC2-independent methylation of non-histone proteins, and methyltransferase-independent interactions of EZH2 with various proteins contributing to gene expression regulation and alterations in the protein stability. is frequently mutated and/or its expression is deregulated in various cancer types.

View Article and Find Full Text PDF

Thermodynamics of nucleosome breathing and positioning.

J Chem Phys

January 2025

Department of Physics and Astronomy and Center for Quantitative Biology, Rutgers University, Piscataway, New Jersey 08854, USA.

Nucleosomes are fundamental units of chromatin in which a length of genomic DNA is wrapped around a histone octamer spool in a left-handed superhelix. Large-scale nucleosome maps show a wide distribution of DNA wrapping lengths, which in some cases are tens of base pairs (bp) shorter than the 147 bp canonical wrapping length observed in nucleosome crystal structures. Here, we develop a thermodynamic model that assumes a constant free energy cost of unwrapping a nucleosomal bp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!