Background: When performing reduction of zygomatic arch fractures, locating the inward portion of the fracture can be difficult. Therefore, this study investigated the discrepancy between the locations of the depression on the soft tissue and bone and sought to identify how to determine the inward portion of the fracture on the patient's face.
Methods: We conducted a retrospective review of chart with isolated zygomatic arch fractures of type V in the Nam and Jung classification from March 2013 to February 2022. For consistent measurements, a reference point (RP), at the intersection between a vertical line passing through the end point of the root of the ear helix in the patient's side-view photograph and a transverse line passing through the longest horizontal axis of the external meatus opening, was established. We then measured the distance between the RP and the soft tissue depression in a portrait and the bone depression on a computed tomography (CT) scan. The discrepancy between these distances was quantified.
Results: Among the patients with isolated zygomatic arch fractures, only those with a fully visible ear on a side-view photograph were included. Twenty-four patients met the inclusion criteria. There were four types of discrepancies in the location of the soft tissue depression compared to the bone depression: type I, forward and upward discrepancy (7.45 and 3.28 mm), type II, backward and upward (4.29 and 4.21 mm), type III, forward and downward (10.06 and 5.15 mm), and type IV, backward and downward (2.61 and 3.27 mm).
Conclusion: This study showed that discrepancy between the locations of the depressions on the soft tissue and bone exists in various directions. Therefore, applying the transverse and vertical distances measured from a bone image of the CT scan onto the patient's face at the indicated RP will be helpful for predicting the reduction location.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10009208 | PMC |
http://dx.doi.org/10.7181/acfs.2023.00031 | DOI Listing |
Am J Forensic Med Pathol
January 2025
County of Santa Clara, Medical Examiner-Coroner Office, San Jose, CA.
There are few reports that discuss the nebulous entity known as posttraumatic subacute meningitis. Herein, we describe a case where a male was found deceased with Streptococcus pyogenes meningitis 7 days after experiencing head trauma inflicted with a tow chain. Computed tomography scan prior to death revealed a scalp laceration with subcutaneous gas and a subdural hematoma.
View Article and Find Full Text PDFClin Oral Implants Res
January 2025
Medical Center - University of Freiburg, Center for Dental Medicine, Department of Prosthetic Dentistry, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Objectives: The purpose of the present prospective case series was to investigate the clinical and radiological outcome of one-piece zirconia implants fabricated from 3Y-TZP with a moderately roughened endosseous surface (Sa = 1.24 μm) to support three-unit fixed dental prostheses (FDP) after five years in function.
Materials And Methods: Twenty-seven patients received a total of 54 implants in a one-stage surgery with immediate provisionalization.
Adv Clin Exp Med
January 2025
Acupuncture and Tuina College, Guizhou University of Traditional Chinese Medicine, Guiyang, China.
Background: Chronic soft tissue injury is characterized by sterile inflammation and pain. Gua sha with Masanggoubang oil (GSMO) treatment has been found to possess anti-inflammatory and analgesic effects.
Objectives: To explore the mechanism of GSMO in chronic soft tissue injuries.
Matrix Biol Plus
February 2025
Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA.
Schwann cells (SCs) hold key roles in axonal function and maintenance in the peripheral nervous system (PNS) and are a critical component to the regeneration process following trauma. Following PNS trauma, SCs respond to both physical and chemical signals to modify phenotype and assist in the regeneration of damaged axons and extracellular matrix (ECM). There is currently a lack of knowledge regarding the SC response to dynamic, temporal changes in the ECM brought on by swelling and the development of scar tissue as part of the body's wound-healing process.
View Article and Find Full Text PDFAlterations of the extracellular matrix (ECM), including both mechanical (such as stiffening of the ECM) and chemical (such as variation of adhesion proteins and deposition of hyaluronic acid (HA)) changes, in malignant tissues have been shown to mediate tumor progression. To survey how cells from different tissue types respond to various changes in ECM mechanics and composition, we measured physical characteristics (adherent area, shape, cell stiffness, and cell speed) of 25 cancer and 5 non-tumorigenic cell lines on 7 different substrate conditions. Our results indicate substantial heterogeneity in how cell mechanics changes within and across tissue types in response to mechanosensitive and chemosensitive changes in ECM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!