Background: Recent clinical evidences show that caspase-1 inhibitor-VX-765 attenuates atherosclerosis in ApoE deficient mice. However, there is rarely information about the effect of VX-765 on hyperphosphatemia-induced vascular smooth muscle cells (VSMCs) calcification or vascular calcification in chronic kidney disease (CKD) rats. Here we investigate the effect of VX-765 on vascular calcification in uremia circumstances.
Methods: Hyperphosphatemia-induced VSMC calcification were evaluated by Alizarin Red S. Aortas from CKD rats which were gavaged with VX-765 were examined for calcification signal using micro-CT. Levels of NLRP3, caspase-1, and GSDMD were measured by quantitative real-time PCR, western blotting, immunofluorescence assay, and immunohistochemistry.
Results: We demonstrated for the first time that the levels of NLRP3, caspase-1, GSDMD, IL-1β, and IL-18 were up-regulated in hyperphosphatemia-induced calcifying VSMCs. Blockade of caspase-1 activation by VX-765 inhibited pyroptosis-related molecules and VSMC calcification in a concentration-dependent manner in vitro. Further analysis of aortas from calcified CKD rats showed an up-regulation of caspase-1 and GSDMD expression compared with those non-calcified vascular tissue from control rats or with those decreased-calcified vascular tissue from CKD rats treated with 50 mg/kg/d, which indicated that pyroptotic indicators were tightly correlated with CKD arterial calcification. In vitro studies further demonstrated that VX-765 ameliorated hyperphosphatemia-induced VSMCs calcification through inhibiting the STAT3 activation.
Conclusions: Our findings indicated that VX-765 could inhibit hyperphosphatemia-induced calcifying VSMCs and ameliorate vascular calcification in CKD rats. VX-765 might be a potential treatment strategy for CKD vascular calcification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2023.175610 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!