Insight into the mechanisms of coronaviruses evading host innate immunity.

Biochim Biophys Acta Mol Basis Dis

Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China. Electronic address:

Published: June 2023

The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) induced coronavirus disease 2019 (COVID-19) has recently caused a pandemic. Patients with COVID-19 presented with a wide spectrum of symptoms for the disease, from entirely asymptomatic disease to full-blown pneumonia and multiorgan failures. More evidence emerged, showing the production of interferons (IFNs) in the severe cases were significantly lower than their milder counterparts, suggesting linkage of COVID-19 to impaired innate immunity. This review presents a brief overview of how coronaviruses evade innate immunity, according to the current studies about SARS-CoV and middle-east respiratory syndrome-coronavirus (MERS-CoV). The coronaviruses manage to block, escape, or dampen the innate immune response by antagonizing double-stranded RNA (dsRNA) sensor, mitochondrial antiviral-signaling protein (MAVS) and stimulator of IFN genes (STING) pathways, epigenetic modification, posttranslational modifications, and host mRNA translation. We provide novel insights into a comprehensive therapy to combat SARS-CoV-2 infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9968664PMC
http://dx.doi.org/10.1016/j.bbadis.2023.166671DOI Listing

Publication Analysis

Top Keywords

innate immunity
12
insight mechanisms
4
mechanisms coronaviruses
4
coronaviruses evading
4
evading host
4
innate
4
host innate
4
immunity severe
4
severe acute
4
acute respiratory
4

Similar Publications

Granulocyte macrophage colony stimulating factor in virus-host interactions and its implication for immunotherapy.

Cytokine Growth Factor Rev

December 2024

Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada. Electronic address:

Viruses have evolved to strategically exploit cellular signaling pathways to evade host immune defenses. GM-CSF signaling plays a pivotal role in regulating inflammation, activating myeloid cells, and enhancing the immune response to infections. Due to its central role in the immune system, viruses may target this pathway to further establish infection.

View Article and Find Full Text PDF

Proteomic analysis of the nonstructural protein 2-host protein interactome reveals a novel regulatory role of SH3 domain-containing kinase-binding protein 1 in porcine reproductive and respiratory syndrome virus replication and apoptosis.

Int J Biol Macromol

January 2025

College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China; Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing 526238, China; Guangdong Wens Dahuanong Bio-Pharmaceutical Co., Ltd., Xinxing 527400, China. Electronic address:

Virus-host protein interaction is critical for successful completion of viral replication cycles. As the largest nonstructural protein (NSP) of porcine reproductive and respiratory syndrome virus (PRRSV), NSP2 plays multiple and critical roles in viral replication, antiviral immunity, cellular tropism and virulence. An interactome of this protein with host proteins would be instrumental in full understanding of these multifunctional roles.

View Article and Find Full Text PDF

FADD cooperates with Caspase-8 to positively regulate the innate immune response and promote apoptosis following bacterial infection in Japanese eel.

Fish Shellfish Immunol

January 2025

Jimei University, College of Fisheries, Key Laboratory of Healthy Mariculture for the East China Sea, Xiamen, 361021, China; Jimei University, College of Fisheries, Engineering Research Center of the Modern Technology for Eel Industry, Xiamen, 361021, China. Electronic address:

Fas-associated protein with Death Domain (FADD) is a crucial signaling component of apoptosis and a vital immunomodulator on inflammatory signaling pathways. However, information on FADD-mediated apoptosis and immune regulation is limited in teleost. We herein cloned a FADD homolog, AjFADD, from Japanese eel (Anguilla japonica).

View Article and Find Full Text PDF

Leptin, NK cells, and the weight of immunity: Insights into obesity.

Int Immunopharmacol

January 2025

Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil. Electronic address:

Obesity is a chronic inflammatory disease that affects more than 1 billion people worldwide and is associated with various metabolic and physiological dysfunctions, directly impacting the dynamics of the immune response, partly due to elevated leptin levels. Leptin is an important peptide hormone that regulates neuroendocrine function and energy homeostasis, with its blood levels reflecting energy reserves, fat mass, or energy deprivation. This hormone also plays a fundamental role in regulating immune function, including the activity of NK cells, which are essential components in antiviral and antitumor activity.

View Article and Find Full Text PDF

A Novel Protein NLRP12-119aa that Prevents Rhabdovirus Replication by Disrupting the RNP Complex Formation.

Adv Sci (Weinh)

January 2025

Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.

The accurate assembly of the ribonucleoprotein (RNP) complex is fundamental for the replication and transcription of rhabdoviruses, which are known for their broad pathogenic impact. A novel 119-amino-acid protein, NLRP12-119aa is identified, encoded by the circular RNA circNLRP12, that effectively disrupts the formation of rhabdovirus RNP complexes through two distinct mechanisms and significantly reduces their replication. NLRP12-119aa exhibits a strong affinity for the conserved 18-nucleotide sequence at the start of the leader RNA of rhabdoviruses VSV, SCRV, and RABV, outcompeting their native N protein interactions, thereby disrupting the assembly of RNP complexes and inhibiting viral replication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!