MTORC2 is a physiological hydrophobic motif kinase of S6 Kinase 1.

Biochim Biophys Acta Mol Cell Res

Growth Factor Signaling Laboratory, Department of Biotechnology, University of Kashmir, Srinagar, India. Electronic address:

Published: April 2023

Ribosomal protein S6 kinase 1 (S6K1), a major downstream effector molecule of mTORC1, regulates cell growth and proliferation by modulating protein translation and ribosome biogenesis. We have recently identified eIF4E as an intermediate in transducing signals from mTORC1 to S6K1 and further demonstrated that the role of mTORC1 is restricted to inducing eIF4E phosphorylation and interaction with S6K1. This interaction relieves S6K1 auto-inhibition and facilitates its hydrophobic motif (HM) phosphorylation and activation as a consequence. These observations underscore a possible involvement of mTORC1 independent kinase in mediating HM phosphorylation. Here, we report mTORC2 as an in-vivo/physiological HM kinase of S6K1. We show that rapamycin-resistant S6K1 truncation mutant ∆NH∆CT continues to display HM phosphorylation with selective sensitivity toward Torin-1. We also show that HM phosphorylation of wildtype S6K1and ∆NH∆CT depends on the presence of mTORC2 regulatory subunit-rictor. Furthermore, truncation mutagenesis and molecular docking analysis reveal the involvement of a conserved 19 amino acid stretch of S6K1 in mediating interaction with rictor. We finally show that deletion of the 19 amino acid region from wildtype S6K1 results in loss of interaction with rictor, with a resultant loss of HM phosphorylation regardless of the presence of functional TOS motif. Our data demonstrate that mTORC2 acts as a physiological HM kinase that can activate S6K1 after its auto-inhibition is overcome by mTORC1. We, therefore, propose a novel mechanism for S6K1 regulation where mTOR complexes 1 and 2 act in tandem to activate the enzyme.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamcr.2023.119449DOI Listing

Publication Analysis

Top Keywords

s6k1
10
hydrophobic motif
8
kinase s6k1
8
s6k1 auto-inhibition
8
amino acid
8
interaction rictor
8
kinase
6
phosphorylation
6
mtorc1
5
mtorc2
4

Similar Publications

Phenylalanine Regulates Milk Protein Synthesis via LAT1-mTOR Signaling Pathways in Bovine Mammary Epithelial Cells.

Int J Mol Sci

December 2024

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.

Phenylalanine (Phe) is a potentially limiting amino acid for lactating cows. The mechanism by which Phe regulates milk protein synthesis remains unclear. The present study elucidates the mechanisms by which phenylalanine affects milk protein synthesis, amino acid utilization, and related signaling pathways in bovine mammary epithelial cells (BMECs).

View Article and Find Full Text PDF

Purpose: Autophagy is a degradation process whose activation underlies beneficial effects of caloric restriction. Isothiocyanates (ITCs) induce autophagy in cancer cells, however, their impact on primary cells remains insufficiently explored, particularly in non-epithelial cells. The aim of this study was to investigate whether ITCs induce autophagy in primary (non-immortalized) mesenchymal cells and if so, to determine the molecular mechanism underlying its activation and consequences on cell functioning.

View Article and Find Full Text PDF

Tryptophan regulates food intake in growing pigs by modulating hypothalamic AMPK-mTOR signaling pathway.

Br J Nutr

December 2024

Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.

Tryptophan (Trp) is an essential amino acid acting as a key nutrition factor regulating animal growth and development. But how Trp modulates food intake in pigs is still not well known. Here, we investigated the effect of dietary supplementation of Trp with different levels on food intake of growing pigs.

View Article and Find Full Text PDF

ORP5 promotes cardiac hypertrophy by regulating the activation of mTORC1 on lysosome.

J Adv Res

December 2024

Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, China; NHC Key Laboratory of Ischemic Heart Diseases, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China. Electronic address:

Introduction: Oxysterol binding protein (OSBP)-related protein 5 (ORP5) mainly functions as a lipid transfer protein at membrane contact sites (MCS). ORP5 facilitates cell proliferation through the activation of mTORC1 signaling. While the pro-hypertrophic effects of mTORC1 are well-documented, the specific role of ORP5 in the context of pathological cardiac hypertrophy remains inadequately understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!