Pure Fe is a potential biodegradable stent material due to its better biocompatibility and mechanical properties, but its degradation rate needs to be improved. Alloying with Zn to form Fe-Zn alloy is anticipated to meet the degradation rate requirements while retaining the iron's inherent properties. Therefore, Fe-Zn alloys with monolayered and multilayered structures were prepared by electrodeposition. The alloys' composition, microstructure, mechanical properties, in vitro degradation and biocompatibility were assessed. Results showed that the Zn content ranged from 2.1 wt% to 11.6 wt%. After annealing at 450°C, all the alloys consisted of α(Fe) solid solution and Zn-rich B2 ordered coherent phase, except for the alloy with 11.6 wt% Zn content, in which a FeZn phase appeared. The layered structure consisted of alternating columnar-grain and nano-grain layers, which compensated for the intrinsic brittleness of electrodeposited metals and improved the galvanic effect of the alloy, thus increasing the strength and plasticity and changing the corrosion from localized to uniform while augmenting the corrosion rate. The yield strength of the multilayered alloy exceeded 350 MPa, its elongation was more than 20%, and its corrosion rate obtained by immersion test in Hank's solution reached 0.367 mm·y. Fe-Zn alloys with lower Zn content had good cytocompatibility with the human umbilical vein endothelial cells and good blood compatibility. The above results verified that the multilayered Fe-Zn alloy prepared by electrodeposition presented enhanced mechanical properties, higher degradation rate, uniform degradation mechanism and good biocompatibility. It should be qualified for the application of biodegradable stents. STATEMENT OF SIGNIFICANCE: A potential biodegradable Fe-Zn alloy, which is difficult to be obtained by the metallurgical method, was prepared by electrodeposition to solve the low degradation rate of iron-based biomaterials. A multilayered microstructure design composed of alternating columnar-grain and nano-grain layers was achieved by changing the electrical parameters. The layered design compensated for the intrinsic poor plasticity of electrodeposited metals. It increased the galvanic effect of the alloy, thus augmenting the corrosion rate and changing the corrosion mode of the alloy from localized to uniform corrosion. The yield strength of multilayered alloy exceeded 350 MPa; its elongation was more than 20%. Moreover, the layered alloy had good cytocompatibility and blood compatibility. It indicates that the alloy is qualified for biodegradable stent application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2023.02.029DOI Listing

Publication Analysis

Top Keywords

mechanical properties
16
degradation rate
16
fe-zn alloys
12
biodegradable stent
12
fe-zn alloy
12
prepared electrodeposition
12
corrosion rate
12
alloy
11
uniform degradation
8
potential biodegradable
8

Similar Publications

Biomimetic peptide conjugates as emerging strategies for controlled release from protein-based materials.

Drug Deliv

December 2025

Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE) Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand.

Biopolymers, such as collagens, elastin, silk fibroin, spider silk, fibrin, keratin, and resilin have gained significant interest for their potential biomedical applications due to their biocompatibility, biodegradability, and mechanical properties. This review focuses on the design and integration of biomimetic peptides into these biopolymer platforms to control the release of bioactive molecules, thereby enhancing their functionality for drug delivery, tissue engineering, and regenerative medicine. Elastin-like polypeptides (ELPs) and silk fibroin repeats, for example, demonstrate how engineered peptides can mimic natural protein domains to modulate material properties and drug release profiles.

View Article and Find Full Text PDF

[Outcomes of Retrograde Femoral Nail Osteosynthesis of Intraarticular Fractures of the Distal Femur].

Acta Chir Orthop Traumatol Cech

January 2025

Klinika ortopedie a traumatologie pohybového ústrojí Fakultní nemocnice Plzeň.

Purpose Of The Study: Intraarticular fractures of the distal femur rank among the most severe musculoskeletal injuries. Various treatment options, such as plate osteosynthesis or retrograde nailing, can be employed. This study aims to evaluate the clinical outcomes and complications of intraarticular distal femoral fractures treated with retrograde femoral nail, with particular emphasis on C3 fractures.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) has recently received increasing interest in molecular biology. This technique allows quick and reliable detection of biomolecules. However, studying RNA-protein complexes using AFM poses significant challenges.

View Article and Find Full Text PDF

Optical tweezers in biomedical research - progress and techniques.

J Med Life

November 2024

Biophysics and Cellular Biotechnology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.

Optical tweezers, which leverage the forces exerted by radiation pressure, have emerged as a pivotal technique for precisely manipulating and analyzing microscopic particles. Since Arthur Ashkin's ground-breaking work in the 1970s and the subsequent development of the single-beam optical trap in 1986, the capabilities of optical tweezers have expanded significantly, enabling the intricate manipulation of biological specimens at the micro- and nanoscale. This review elucidates the foundational principles of optical trapping and their extensive applications in the biomedical sciences.

View Article and Find Full Text PDF

Background: The 3D printing of macro- and mesoporous biomimetic grafts composed of polycaprolactone (PCL) infused with nanosized synthetic smectic clay is a promising innovation in biomaterials for bone tissue engineering (BTE). The main challenge lies in achieving a uniform distribution of nanoceramics across low to high concentrations within the polymer matrix while preserving mechanical properties and biological performance essential for successful osseointegration.

Methods: This study utilized 3D printing to fabricate PCL scaffolds enriched with nanosized synthetic smectic clay (LAP) to evaluate its effects on structural, chemical, thermal, mechanical, and degradative properties, with a focus on in vitro biological performance and non-toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!