Background: The postoperative follow-up of a patient after total knee arthroplasty (TKA) requires regular evaluation of the condition of the knee through interpretation of X-rays. This rigorous analysis requires expertize, time, and methodical standardization. Our work evaluated the use of an artificial intelligence tool, X-TKA, to assist surgeons in their interpretation.

Methods: A series of 12 convolutional neural networks were trained on a large database containing 39,751 X-ray images. These algorithms are able to determine examination quality, identify image characteristics, assess prosthesis sizing and positioning, measure knee-prosthesis alignment angles, and detect anomalies in the bone-cement-implant complex. The individual interpretations of a pool of senior surgeons with and without the assistance of X-TKA were evaluated on a reference dataset built in consensus by senior surgeons.

Results: The algorithms obtained a mean area under the curve value of 0.98 on the quality assurance and the image characteristics tasks. They reached a mean difference for the predicted angles of 1.71° (standard deviation, 1.53°), similar to the surgeon average difference of 1.69° (standard deviation, 1.52°). The comparative analysis showed that the assistance of X-TKA allowed surgeons to gain 5% in accuracy and 12% in sensitivity in the detection of interface anomalies. Moreover, this study demonstrated a gain in repeatability for each single surgeon (Light's kappa +0.17), as well as a gain in the reproducibility between surgeons (Light's kappa +0.1).

Conclusion: This study highlights the benefit of using an intelligent artificial tool for a standardized interpretation of postoperative knee X-rays and indicates the potential for its use in clinical practice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.arth.2023.02.053DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
total knee
8
knee arthroplasty
8
image characteristics
8
assistance x-tka
8
standard deviation
8
intelligence radiographic
4
radiographic analysis
4
analysis tool
4
tool total
4

Similar Publications

MultiChem: predicting chemical properties using multi-view graph attention network.

BioData Min

January 2025

Department of Computer Science, Hanyang University, Seoul, Republic of Korea.

Background: Understanding the molecular properties of chemical compounds is essential for identifying potential candidates or ensuring safety in drug discovery. However, exploring the vast chemical space is time-consuming and costly, necessitating the development of time-efficient and cost-effective computational methods. Recent advances in deep learning approaches have offered deeper insights into molecular structures.

View Article and Find Full Text PDF

Background: Considering the disruptive potential of AI technology, its current and future impact in healthcare, as well as healthcare professionals' lack of training in how to use it, the paper summarizes how to approach the challenges of AI from an ethical and legal perspective. It concludes with suggestions for improvements to help healthcare professionals better navigate the AI wave.

Methods: We analyzed the literature that specifically discusses ethics and law related to the development and implementation of AI in healthcare as well as relevant normative documents that pertain to both ethical and legal issues.

View Article and Find Full Text PDF

Background: Complete Cytoreduction (CC) in ovarian cancer (OC) has been associated with better outcomes. Outcomes after CC have a multifactorial and interrelated cause that may not be predictable by conventional statistical methods. Artificial intelligence (AI) may be more accurate in predicting outcomes.

View Article and Find Full Text PDF

Resolving tissue complexity by multimodal spatial omics modeling with MISO.

Nat Methods

January 2025

Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Spatial molecular profiling has provided biomedical researchers valuable opportunities to better understand the relationship between cellular localization and tissue function. Effectively modeling multimodal spatial omics data is crucial for understanding tissue complexity and underlying biology. Furthermore, improvements in spatial resolution have led to the advent of technologies that can generate spatial molecular data with subcellular resolution, requiring the development of computationally efficient methods that can handle the resulting large-scale datasets.

View Article and Find Full Text PDF

Preeclampsia (PE) is a major pregnancy-specific cardiovascular complication posing latent life-threatening risks to mothers and neonates. The contribution of immune dysregulation to PE is not fully understood, highlighting the need to explore molecular markers and their relationship with immune infiltration to potentially inform therapeutic strategies. We used bioinformatics tools to analyze gene expression data from the Gene Expression Omnibus (GEO) database using the GEOquery package in R.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!