As an emerging green energy storage and conversion system, rechargeable Li-CO batteries have undergone extensive research due to their ultra-high energy density and their significant role in greenhouse gas CO conversion. However, current Li-CO batteries have some shortcomings that severely limit their large-scale application. The most critical problems involve the insulation of the discharge product LiCO and the slow decomposition kinetics, meaning that the battery generates a large overpotential and has a low cycle life, so the rational design of an efficient cathode catalyst is imperative. Here, we prepared a composite material the magnetron sputtering of Pt onto nitrogen-doped polypyrrole carbon nanotubes (NPPy-CNTs) as a high-efficiency cathode catalyst for Li-CO batteries. The three-dimensional hollow tubular NPPy-CNTs can provide efficient channels for CO diffusion and enough space for the uniform deposition and decomposition of LiCO. Benefiting from the doping of nitrogen, more defects and active sites are introduced into the polypyrrole carbon nanotubes. Furthermore, the introduction of a small amount of the precious metal Pt effectively improves the catalytic activity of the CO reduction reaction (CORR) and the CO release reaction (COER), greatly improving the cycle life of the battery. The Pt-NPPy-CNT-based battery shows a much improved electrochemical performance. The overpotential of the battery is reduced to 0.75 V, and the battery shows a specific discharge capacity of up to 29 614 mA h g.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cp00116d | DOI Listing |
Nanoscale
January 2025
Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 557, India.
Chemotherapy is a crucial cancer treatment, but its effectiveness requires precise monitoring of drug concentrations in patients. This study introduces an innovative electrochemical strip sensor design to detect and continuously monitor methotrexate (MTX), a key chemotherapeutic drug. The sensor is crafted through an eco-friendly synthesis process that produces porous reduced graphene oxide (PrGO), which is then integrated with gold nanocomposites and polypyrrole (PPy) to boost the performance of a screen-printed carbon electrode (SPCE).
View Article and Find Full Text PDFFood Chem X
January 2025
Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
An ultrasensitive and selective voltammetric platform combined a molecularly imprinted poly(pyrrole) membrane with Ag-nanoparticle-functionalized black phosphorus nanosheets (MIP/BPNS-AgNPs) was developed for trace GAT detection. The physicochemical properties of the MIP/BPNS-AgNPs were studied by various spectroscopic and electrochemical techniques. BPNS-AgNPs improved the ambient stability and electrochemical activity of the BPNS and possessed a large surface area for accommodating abundant templates to produce specific imprinted sites.
View Article and Find Full Text PDFChempluschem
January 2025
Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047, Moscow, Russia.
Although microbial fuel cells (MFC) could be a promising energy source, their implementation is largely limited by low performance. There are several approaches to overcome this issue. For example, MFC performance can be enhanced using redox mediators (RM) capable of transferring electrons between microorganisms and MFC electrodes.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China. Electronic address:
Most of the developed flexible hydrogel supercapacitors struggle to maintain their electrochemical stability and structural integrity under tensile strain. Therefore, developing a flexible supercapacitor with excellent mechanical properties and stable electrochemical performance under different strains remains a challenge. Based on the previous cartilage-like structure, we designed a new coarse nanofiber bundle and ordered network.
View Article and Find Full Text PDFMikrochim Acta
December 2024
Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
GO/Co-MOF/PPy-350 (GPC-350) was synthesized by in situ growth of ultrafine Co-MOF on graphene oxide (GO), followed by encapsulation with polypyrrole (PPy) and calcination at 350.0℃. Meanwhile, MoS-MWCNTs (MoS-CNTs) were produced via the in situ synthesis of MoS within multi-walled carbon nanotubes (MWCNTs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!