GlycoConnect technology can be readily adapted to provide different drug-to-antibody ratios (DARs) and is currently also evaluated in various clinical programs, including ADCT-601 (DAR2), MRG004a (DAR4), and XMT-1660 (DAR6). While antibody-drug conjugates (ADCs) typically feature a DAR2-8, it has become clear that ADCs with ultrapotent payloads (e.g., PBD dimers and calicheamicin) can only be administered to patients at low doses (<0.5 mg/kg), which may compromise effective biodistribution and may be insufficient to reach target receptor saturation in the tumor. Here, we show that GlycoConnect technology can be readily extended to DAR1 ADCs without the need of antibody re-engineering. We demonstrate that various ultrapotent, cytotoxic payloads are amenable to this methodology. In a follow-up experiment, HCC-1954 tumor spheroids were treated with either an AlexaFluor647-labeled DAR1 or DAR2 PBD-based ADC to study the effect on tumor penetration. Significant improvement of tumor spheroid penetration was observed for the DAR1 ADC compared to the DAR2 ADC at an equal payload dose, underlining the potential of a lower DAR for ADCs bearing ultrapotent payloads.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10020967PMC
http://dx.doi.org/10.1021/acs.bioconjchem.2c00611DOI Listing

Publication Analysis

Top Keywords

antibody-drug conjugates
8
ultrapotent payloads
8
glycoconnect technology
8
generation dar1
4
dar1 antibody-drug
4
conjugates ultrapotent
4
payloads tailored
4
tailored glycoconnect
4
technology glycoconnect
4
technology adapted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!