Natural methane (CH) emissions from aquatic ecosystems may rise because of human-induced climate warming, although the magnitude of increase is highly uncertain. Using an exceptionally large CH flux dataset (~19,000 chamber measurements) and remotely sensed information, we modeled plot- and landscape-scale wetland CH emissions from the Prairie Pothole Region (PPR), North America's largest wetland complex. Plot-scale CH emissions were driven by hydrology, temperature, vegetation, and wetland size. Historically, landscape-scale PPR wetland CH emissions were largely dependent on total wetland extent. However, regardless of future wetland extent, PPR CH emissions are predicted to increase by two- or threefold by 2100 under moderate or severe warming scenarios, respectively. Our findings suggest that international efforts to decrease atmospheric CH concentrations should jointly account for anthropogenic and natural emissions to maintain climate mitigation targets to the end of the century.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9977182PMC
http://dx.doi.org/10.1126/sciadv.ade1112DOI Listing

Publication Analysis

Top Keywords

methane emissions
8
north america's
8
america's largest
8
largest wetland
8
wetland complex
8
wetland emissions
8
wetland extent
8
emissions
7
wetland
7
large increases
4

Similar Publications

Spontaneous coal fires are a significant source of greenhouse gas emissions, contributing to global warming. However, the lack of reliable estimation methods and research has obscured the full environmental impact of these emissions. This paper presents a novel quantification method for fugitive carbon emissions from spontaneous coal combustion.

View Article and Find Full Text PDF

Unravelling biotic and abiotic mechanisms of mature compost to alleviate gaseous emissions in kitchen waste composting by metagenomic analysis.

Bioresour Technol

January 2025

Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China. Electronic address:

Mature compost can reduce gaseous emissions in composting, but its regulation mechanisms via biotic and abiotic functions are largely unknown. This study used fresh and inactivated mature compost as additives in kitchen waste composting to unveil the relevant mechanisms using metagenomic analysis. Results showed that mature compost reduce gaseous emission by improving physiochemical properties and inoculating functional microbes.

View Article and Find Full Text PDF

This study employed in-situ online monitoring to assess the impact of Spartina alterniflora harvesting on greenhouse gas emissions. Their fluxes and δC values were measured in unvegetated tidal flat, low and medium vegetation coverage areas of the salt marsh wetlands along the south shore of Hangzhou Bay about a month after harvest. The objective was to clarify fluxes changes and interactions with environmental factors.

View Article and Find Full Text PDF

Tidal-driven NO emission is a stronger resister than CH to offset annual carbon sequestration in mangrove ecosystems.

Sci Total Environ

January 2025

State Key Laboratory of Marine Resource Utilization in South China Sea, School of Ecology, School of Marine Science and Engineering, Hainan University, Haikou, Hainan, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, Hainan, China. Electronic address:

The mangrove ecosystems store a significant amount of "blue carbon" to mitigate global climate change, but also serve as hotspots for greenhouse gases (GHGs: CO, CH and NO) production. The CH and NO emissions offset mangrove carbon benefits, however, the extent of this effect remains inadequately quantified. By applying the 36 h time-series observations and mapping cruises, here we investigated the spatial and temporal distribution of GHGs and their fluxes in Dongzhaigang (DZG) bay, the largest mangrove ecosystem in China, at tidal and monthly scales.

View Article and Find Full Text PDF

A new insight on simultaneous water purification and greenhouse gas reduction by constructing sulfur-siderite driven autotrophic denitrification pathways in constructed wetlands.

Water Res

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, China. Electronic address:

Sulfur-siderite driven autotrophic denitrification (SSAD) has received increasing attention for nutrient removal in constructed wetlands (CWs). Nevertheless, its effectiveness in simultaneous water purification and greenhouse gases (GHGs) reduction remains obscure. In this study, three vertical flow constructed wetlands (VFCWs), filled with quartz sand (CCW), sulfur (S-CW), and sulfur-siderite mixed substrates (SS-CW), were constructed to investigate the underlying mechanisms of SSAD on water purification enhancement and GHGs reduction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!