Rett syndrome, a rare genetic neurodevelopmental disorder in humans, does not have an effective cure. However, multiple therapies and medications exist to treat symptoms and improve patients' quality of life. As research continues to discover and evaluate new medications for Rett syndrome patients, there remains a lack of objective physiological and motor activity-based (physio-motor) biomarkers that enable the measurement of the effect of these medications on the change in patients' Rett syndrome severity. In our work, using a commercially available wearable chest patch, we recorded simultaneous electrocardiogram and three-axis acceleration from 20 patients suffering from Rett syndrome along with the corresponding Clinical Global Impression-Severity score, which measures the overall disease severity on a 7-point Likert scale. We derived physio-motor features from these recordings that captured heart rate variability, activity metrics, and the interactions between heart rate and activity. Further, we developed machine learning (ML) models to classify high-severity Rett patients from low-severity Rett patients using the derived physio-motor features. For the best-trained model, we obtained a pooled area under the receiver operating curve equal to 0.92 via a leave-one-out-patient cross-validation approach. Finally, we computed the feature popularity scores for all the trained ML models and identified physio-motor biomarkers for Rett syndrome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9977017PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0266351PLOS

Publication Analysis

Top Keywords

rett syndrome
24
heart rate
12
rett
8
syndrome severity
8
interactions heart
8
rate variability
8
physio-motor biomarkers
8
derived physio-motor
8
physio-motor features
8
rett patients
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!