Passive-state-preparation (PSP) continuous-variable quantum key distribution (CVQKD) protocol explores the intrinsic field fluctuations of a thermal source. Compared with traditional Gaussian-modulated coherent-state CVQKD, it does not need active modulations and has promising applications in chip integration and portable free-space quantum key distribution. In this Letter, we propose and experimentally realize a PSP CVQKD scheme with transmitted local oscillator (LO) through fluctuating transmittance free-space channel using an off-the-shelf amplified spontaneous emission source for the first time. By proposing thermal-state polarization multiplexing transmitted LO, synchronized channel transmittance monitoring and fine-grained phase compensation techniques, secure keys within -15 dB transmittance of simulated free-space channel with turbulence are generated, with a final average secure key rate of 1.015 Mbps asymptotically. Equivalent atmospheric turbulence model analysis shows that the free-space PSP CVQKD scheme provides a promising outlook for high-speed and chip-based CVQKD for kilometer-level atmospheric channel networks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.485166 | DOI Listing |
ACS Nano
January 2025
MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, School of Materials Science and Engineering, Institute of Optoelectronics & Nanomaterials, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
Room temperature (RT) synthesized mixed bromine and chlorine CsPbBrCl perovskite quantum dots (Pe-QDs) offer notable advantages for blue quantum dot light-emitting diodes (QLEDs), such as cost-effective processing and narrow luminescence peaks. However, the efficiency of blue QLEDs using these RT-synthesized QDs has been limited by inferior crystallinity and deep defect presence. In this study, we demonstrate a precise approach to constructing high-quality gradient core-shell (CS) structures of CsPbBrCl QD through anion exchange.
View Article and Find Full Text PDFACS Sens
January 2025
Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
Over recent years, the LUMinescent AntiBody Sensor (LUMABS) system, utilizing bioluminescence resonance energy transfer (BRET), has emerged as a highly effective method for antibody detection. This system incorporates NanoLuc (Nluc) as the donor and fluorescent protein (FP) as the acceptor. However, the limited Stokes shift of FP poses a challenge, as it leads to significant spectral cross-talk between the excitation and emission spectra.
View Article and Find Full Text PDFInorg Chem
January 2025
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Material Science and Engineering, Shandong University, Jinan 250061, P. R. China.
In this work, CaWO (CWO) phosphors were successfully synthesized using a high-temperature solid-state method, exhibiting an anomalous far-red/near-infrared (FR-NIR) emission centered at 685 nm. The origin of this FR-NIR emission is confirmed through Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), density functional theory (DFT) calculations, and heterovalent cationic substitution (Y/Na → Ca). These analyses indicate that interstitial oxygen (O) defects within the lattice are primarily responsible for the FR-NIR emission.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China.
The integration of a photodetector that converts optical signals into electrical signals is essential for scalable integrated lithium niobate photonics. Two-dimensional materials provide a potential high-efficiency on-chip detection capability. Here, we demonstrate an efficient on-chip photodetector based on a few layers of MoTe on a thin film lithium niobate waveguide and integrate it with a microresonator operating in an optical telecommunication band.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Hebei Short Process Steelmaking Technology Innovation Center, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
Microbial corrosion has significant implications for the economy, environment, and human safety worldwide. Photocatalytic antibacterial technology, owing to its advantages in environmental protection, broad-spectrum, and efficient sterilization, presents a compelling alternative to traditional antibacterial strategies for microbial corrosion protection. In recent years, photocatalytic quantum dot materials have garnered considerable attention in this field due to their unique quantum effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!