Progress in ovarian cancer treatment lags behind other tumor types. With diagnosis usually at an advanced stage, there is a high demand for reliable prognostic biomarkers capable of the selection of effective chemo- and targeted therapies. Our goal was to establish a large-scale transcriptomic database and use it to uncover and rank survival-associated genes. Ovarian cancer cohorts with transcriptome-level gene expression data and clinical follow-up were identified from public repositories. All samples were normalized and entered into an integrated database. Cox univariate survival analysis was performed for all genes and was followed by multivariate analysis for selected genes involving clinical and pathological variables. False discovery rate was computed for multiple hypothesis testing and a 1% cutoff was used to determine statistical significance. The complete integrated database comprises 1816 samples from 17 datasets. Altogether, 2468 genes were correlated to progression-free survival (PFS), and 704 genes were correlated with overall survival (OS). The most significant genes were WBP1L, ASAP3, CNNM2, and NCAPH2 for progression-free survival and CSE1L, NUAK1, ALPK2, and SHKBP1 for overall survival. Genes significant for PFS were also preferentially significant for predicting OS as well. All data including HR and p values as well as the used cutoff values for all genes for both PFS and OS are provided to enable the ranking of future biomarker candidates across all genes. Our results help to prioritize genes and to neglect those which are most likely to fail in studies aiming to establish new clinically useful biomarkers and therapeutic targets in serous ovarian cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10400493 | PMC |
http://dx.doi.org/10.1007/s11357-023-00742-4 | DOI Listing |
Cancer Res Commun
January 2025
Indiana University School of Medicine, Bloomington, IN, United States.
Ovarian cancer is a deadly gynecological disease with frequent recurrence. Current treatments for patients include platinum-based therapy regimens with PARP inhibitors specific for HR-deficient high-grade serous ovarian cancers (HGSOCs). Despite initial effectiveness, patients inevitably develop disease progression as tumor cells acquire resistance.
View Article and Find Full Text PDFBiochem Biophys Rep
March 2025
Department of Molecular and Biotechnology, Atomic Energy Commission of Syria (AECS), Syria.
Ovarian cancer is a common and lethal malignancy among women, whereas chemoresistance is one of the major challenges to its treatment and prognosis. Chemoresistance is a multifactorial phenomenon, involving various mechanisms that collectively modify the cell's response to treatment. Among the changes that arise in cells after acquiring chemoresistance is miRNA dysregulation.
View Article and Find Full Text PDFWe recently reported on the development of a unique cancer-targeting peptide called NAF-1 (derived from CISD2/NAF-1). NAF-1 selectively permeates the plasma membrane (PM) of cancer cells, but not healthy cells, causing the activation of apoptotic and ferroptotic cell death pathways specifically in cancer cells. NAF-1 also targets and shrinks human breast and ovarian cancer tumors in a xenograft mice model system without any apparent side effects.
View Article and Find Full Text PDFDrug Dev Res
February 2025
Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong, China.
Ovarian cancer is the seventh most common lethal tumor among women in the world. FOXM1 is a transcription factor implicated in the initiation and progression of ovarian cancer by regulating key oncogenic genes. The role of regulatory regions in regulating the expression of FOXM1 in ovarian cancer is not completely clarified.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
February 2025
Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
TWIST1 is aberrantly expressed in ovarian cancer (OC). MFAP2 is a downstream target of TWIST1, and we previously found MFAP2 facilitated OC development by activating FOXM1/β-catenin. We planned to investigate the mechanisms of TWIST1 in OC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!