Protocol to measure centrosome cohesion deficits mediated by pathogenic LRRK2 in cultured cells using confocal microscopy.

STAR Protoc

Department of Anesthesiology and Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ 07103, USA. Electronic address:

Published: March 2023

The present protocol allows for quantification of inter-centrosome distances in G2 phase cells by confocal fluorescence microscopy to determine centrosome cohesion deficits. We describe transfection and immunofluorescence approaches followed by image acquisition and analysis of inter-centrosome distances. This protocol is for adherent A549 cells transiently overexpressing pathogenic LRRK2 and for immortalized murine embryonic fibroblasts endogenously expressing LRRK2 but is amenable to any other cultured cell type as well. For complete details on the use and execution of this protocol, please refer to Fdez et al. and Lara Ordóñez et al..

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9860150PMC
http://dx.doi.org/10.1016/j.xpro.2022.102024DOI Listing

Publication Analysis

Top Keywords

centrosome cohesion
8
cohesion deficits
8
pathogenic lrrk2
8
cells confocal
8
inter-centrosome distances
8
protocol
4
protocol measure
4
measure centrosome
4
deficits mediated
4
mediated pathogenic
4

Similar Publications

Separase plays a central role in chromosome separation during mitosis and in centrosome cycle. Tight control of separase activity is required to prevent unscheduled resolution of sister chromatid cohesion and centrosome aberrations, thereby preserving genome stability. In mammals, despite their disassembly in early mitosis, some nuclear envelope components possess mitotic roles, but links with separase activity remain unexplored.

View Article and Find Full Text PDF

Leucine - rich repeat containing 45 protein (LRRC45) protein localizes at the proximal end of centrioles and forms a component of the proteinaceous linker between them, with an important role in centrosome cohesion. In addition, a pool of it localizes at the distal appendages of the modified parent centriole that forms the primary cilium and it has essential functions in the establishment of the transition zone and axonemal extension during early ciliogenesis. Here, we describe three individuals from two unrelated families with severe central nervous system anomalies.

View Article and Find Full Text PDF

LRRC45 accelerates bladder cancer development and ferroptosis inhibition via stabilizing NRF2 by competitively KEAP1 interaction.

Free Radic Biol Med

January 2025

Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China. Electronic address:

Centrosomal dysregulation is closely linked to the genesis and progression of tumors. A comprehensive analysis of single-cell RNA sequencing (scRNA-seq) data has revealed that leucine-rich repeat-containing protein 45 (LRRC45), a centrosome linker protein crucial for maintaining centrosome cohesion and a member of the leucine-rich repeat-containing proteins (LRRCs) family, is significantly upregulated in bladder cancer. Notably, the elevated expression levels of LRRC45 were strongly correlated with a poor prognosis in patients.

View Article and Find Full Text PDF

Multiciliated cells (MCCs) serve many important functions, including fluid propulsion and chemo- and mechanosensing. Diseases ranging from rare conditions to the recent COVID-19 global health pandemic have been linked to MCC defects. In recent years, the zebrafish has emerged as a model to investigate the biology of MCCs.

View Article and Find Full Text PDF

P21 activated kinase 6 (PAK6) is a serine-threonine kinase with physiological expression enriched in the brain and overexpressed in a number of human tumors. While the role of PAK6 in cancer cells has been extensively investigated, the physiological function of the kinase in the context of brain cells is poorly understood. Our previous work uncovered a link between PAK6 and the Parkinson's disease (PD)-associated kinase LRRK2, with PAK6 controlling LRRK2 activity and subcellular localization via phosphorylation of 14-3-3 proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!