AI Article Synopsis

  • Integral equation theory (IET) offers a new software called EPISOL that efficiently calculates the solvation structures and free energies of solute molecules using advanced modeling techniques.
  • EPISOL includes multiple mathematical models, such as hydrophobicity-induced density inhomogeneity and ion-dipole correction, enhancing its accuracy for different solutes while implementing numerical schemes to improve calculation stability.
  • The software features a user-friendly interface, is compatible with popular simulation packages like AMBER and GROMACS, and can handle large biomolecules, making it a valuable tool for researchers in chemistry and biology.

Article Abstract

Integral equation theory (IET) provides an effective solvation model for chemical and biological systems that balances computational efficiency and accuracy. We present a new software package, the expanded package for IET-based solvation (EPISOL), that performs 3D-reference interaction site model (3D-RISM) calculations to obtain the solvation structure and free energies of solute molecules in different solvents. In EPISOL, we have implemented 22 different closures, multiple free energy functionals, and new variations of 3D-RISM theory, including the recent hydrophobicity-induced density inhomogeneity (HI) theory for hydrophobic solutes and ion-dipole correction (IDC) theory for negatively charged solutes. To speed up the convergence and enhance the stability of the self-consistent iterations, we have introduced several numerical schemes in EPISOL, including a newly developed dynamic mixing approach. We show that these schemes have significantly reduced the failure rate of 3D-RISM calculations compared to AMBER-RISM software. EPISOL consists of both a user-friendly graphic interface and a kernel library that allows users to call its routines and adapt them to other programs. EPISOL is compatible with the force-field and coordinate files from both AMBER and GROMACS simulation packages. Moreover, EPISOL is equipped with an internal memory control to efficiently manage the use of physical memory, making it suitable for performing calculations on large biomolecules. We demonstrate that EPISOL can efficiently and accurately calculate solvation density distributions around various solute molecules (including a protein chaperone consisting of 120,715 atoms) and obtain solvent free energy for a wide range of organic compounds. We expect that EPISOL can be widely applied as a solvation model for chemical and biological systems. EPISOL is available at https://github.com/EPISOLrelease/EPISOL.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcc.27088DOI Listing

Publication Analysis

Top Keywords

3d-rism calculations
12
chemical biological
12
episol
10
software package
8
package expanded
8
calculations solvation
8
solvation model
8
model chemical
8
biological systems
8
solute molecules
8

Similar Publications

Development of Receptor Desolvation Scoring and Covalent Sampling in DOCK 6: Methods Evaluated on a RAS Test Set.

J Chem Inf Model

January 2025

NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., P.O. Box B, Frederick 21702, Maryland, United States.

Molecular docking methods are widely used in drug discovery efforts. RAS proteins are important cancer drug targets, and are useful systems for evaluating docking methods, including accounting for solvation effects and covalent small molecule binding. Water often plays a key role in small molecule binding to RAS proteins, and many inhibitors─including FDA-approved drugs─covalently bind to oncogenic RAS proteins.

View Article and Find Full Text PDF
Article Synopsis
  • Endolysins from bacteriophages can break down bacterial cell walls and are used in various industries to combat biofilms and infections.
  • The study focused on understanding how single-domain endolysins bind to peptidoglycan, using computational methods like molecular docking and bioinformatics, which are easier compared to experimental methods.
  • The research found that Autodock Vina and the 3D-RISM module supported prior findings on the binding mechanism of a specific endolysin, showing that both computational tools effectively predicted the binding and interaction of endolysins with peptidoglycan.
View Article and Find Full Text PDF

Predicting the precise locations of metal binding sites within metalloproteins is a crucial challenge in biophysics. A fast, accurate, and interpretable computational prediction method can complement the experimental studies. In the current work, we have developed a method to predict the location of Ca ions in calcium-binding proteins using a physics-based method with an all-atom description of the proteins, which is substantially faster than the molecular dynamics simulation-based methods with accuracy as good as data-driven approaches.

View Article and Find Full Text PDF

Cation-Binding of Glutamate in Aqueous Solution.

J Phys Chem B

June 2024

Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Regensburg D-93040, Germany.

Interactions of the cations Li, Na, Mg, and Ca with L-glutamate (Glu) in aqueous solution were studied at room temperature with dielectric relaxation spectroscopy in the gigahertz region. Spectra of ∼0.4 M NaGlu with added LiCl, NaCl, MgCl, or CaCl ((MCl) ≤ 1.

View Article and Find Full Text PDF

Viruses are the most numerous biological form living in any ecosystem. Viral diseases affect not only people but also representatives of fauna and flora. The latest pandemic has shown how important it is for the scientific community to respond quickly to the challenge, including critically assessing the viral threat and developing appropriate measures to counter this threat.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!