Plants have evolved well-tuned surveillance systems, including complex defence mechanisms, to constrain pathogens. TFs are master regulators of host molecular responses against plant pathogens. While PepMV constitutes a major threat to the global tomato production, there is still a lack of information on the key TFs that regulate host responses to this virus. A combinatorial research approach was applied relying on tomato transcriptome analysis, RT-qPCR validation, phylogenetic classification, comparative analysis of structural features, cis-regulatory element mining and in silico co-expression analysis to identify a set of 11 highly responsive TFs involved in the regulation of host responses to PepMV. An endemic PepMV isolate, generating typical mosaic symptoms, modified expression of ca. 3.3% of tomato genes, resulting in 1,120 DEGs. Functional classification of 502 upregulated DEGs revealed that photosynthesis, carbon fixation and gene silencing were widely affected, whereas 618 downregulated genes had an impact mainly on plant defence and carotenoid biosynthesis. Strikingly, all 11 highly responsive TFs carried abiotic stress response cis-regulatory elements, whereas five of them were better aligned with rice than with Arabidopsis gene homologues, suggesting that plant responses against viruses may predate divergence into monocots and dicots. Interestingly, tomato C2H2 family TFs, ZAT1-like and ZF2, may have distinct roles in plant defence due to opposite response patterns, similar to their Arabidopsis ZAT10 and ZAT12 homologues. These highly responsive TFs provide a basis to study in-depth molecular responses of the tomato-PepMV pathosystem, providing a perspective to better comprehend viral infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/plb.13515 | DOI Listing |
Ecotoxicol Environ Saf
January 2025
Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China. Electronic address:
Habitat fragmentation represents a multifaceted global conservation threat, exerting both direct and indirect effects on individual animals and communities. Reptiles, particularly smaller species with limited migratory abilities, are especially vulnerable to these changes. This study examines how small reptiles adapt their life history strategies in fragmented habitats and determines whether their responses are primarily due to phenotypic plasticity or genetic adaptation.
View Article and Find Full Text PDFCell Rep
January 2025
The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Science, Shandong University, Qingdao, Shandong 266237, China. Electronic address:
Jasmonate (JA), a key plant hormone, regulates various aspects of plant development and stress responses, primarily through the degradation of canonical jasmonate-ZIM domain (JAZ) proteins by the SCF complex. While JAZ8, a non-canonical JAZ protein lacking the degron signal, has been shown to repress JA responses, the mechanism by which JA inhibits JAZ8 activity remains unclear. Here, we demonstrate that Arabidopsis ethylene response factor 114 (ERF114), ERF115, and ERF109 regulate JA signaling through interacting with JAZ8.
View Article and Find Full Text PDFTransl Pediatr
December 2024
Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Background: Neuroblastoma (NB) is a highly heterogeneous and common pediatric malignancy with a poor prognosis. Ferroptosis, an iron-dependent cell death pathway, may play a crucial role in NB tumor progression and immune response. This study aimed to investigate ferroptosis in NB to identify potential therapeutic targets and develop predictive models for prognosis and recurrence.
View Article and Find Full Text PDFPlant Direct
January 2025
Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Institute of Chinese Herbal Medicines Henan Academy of Agricultural Sciences Zhengzhou China.
The superfamily represents a class of transcription factors involved in plant growth, development, and stress responses. ., also known as safflower, is an important plant whose flowers contain carthamin, an expensive aromatic pigment with various medicinal and flavoring properties.
View Article and Find Full Text PDFJ Med Educ Curric Dev
January 2025
Department of Health Policy and Management, Columbia University Mailman School of Public Health, New York, NY, USA.
Objectives: Instilling the principles of ethical and responsible medical research is critical for educating the next generation of clinical researchers. We developed a responsible conduct of research (RCR) workshop and associated curriculum for undergraduate trainees in a quantitative clinical research program.
Methods: Topics in this 7-module RCR workshop are relevant to undergraduate trainees in quantitative fields, many of whom are learning about these concepts for the first time.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!